• 제목/요약/키워드: Harmonic Response Analysis

검색결과 277건 처리시간 0.033초

Theory of Optical Second Harmonic Generation from Al Metal Surfaces

  • Lee, Kyungmee;Lee, Hyungrak;Choi, Seongsoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.199.1-199.1
    • /
    • 2014
  • In nonlinear optics, the properties of nonlinear optical responses such as polarization and nonlinear analysis of the nonlinear surfaces were investigated using the jellium model by optical second harmonic generation. The nonlinear response of the Al metal surfaces were calculated using TDLDA. Band structure, lattice constant and bulk modulus of the Al metal were investigated. Effective potential and electron density were compared by changing different.

  • PDF

3상 정류기부하에 대한 수동 고조파필터의 해석 및 설계 (Analysis and Design of a Passive Harmonic Filter for a Three-Phase Rectifier)

  • 조영식;차한주
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.316-322
    • /
    • 2009
  • This paper presents an analytical design method of a passive harmonic filter for a three-phase diode rectifier and uses a new transfer function approach in the analysis and design. The transfer function approach derives an analytical formulation of an utility system including passive filters with a basis of Laplace transform and provides a graphical formulation so that a visualized insight into an interaction between individual filter and system response can be attainted. Harmonic impedance, voltage division and current division transfer function are used as a design tool, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. A simple five-step design procedure is introduced in the filter design, which consists of system analysis, selection of PCC(Point of Common Coupling), filter specification calculation, appropriate filter design for system and filter implementation. Philosophy governing the design procedure is based on a numerical/graphical iterative solution, trial and error with visualization feed-back based on "algebra on the graph". Finally, performance of the designed passive harmonic filter is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th harmonics are decreased within IEEE-519 distortion limits, respectively.

Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구 (The Study of harmonic peaks removal for modal analysis of Rolling tire)

  • 최정현;이상주;박주배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Distributed Load on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.19-26
    • /
    • 2008
  • This study has been carried out to investigate the dynamic characteristics of RC slabs. For this purpose, the 20-node solid element has been used to discretize the RC slabs into two parts of concrete and rebar. The material non-linearity considering elasto-visco plastic model and the smeared crack model have been adopted in the finite element formulation. The applied load can handle step load, load intensity of harmonic load, area of distributed load and frequency. The frequency of harmonic load has an significant effect on dynamic behaviour in terms of displacement. As the frequency is increased, the effect of load amplitude is more serious. Especially, if the frequency of harmonic load exceeds 30 Hz, it is noted that the displacement by harmonic load is greater than that by step load. In case of harmonic load, the damping effect shows no certain tendency with respect to frequency of load. In details, the damping is effective when the frequency of harmonic load is 2 Hz, but there is no consistent tendency according to damping ratio. The dynamic response when the frequency of harmonic load is 3 Hz shows same result for undamped case as well as for damped case with 5% damping ratio. It is also noted that we can get the largest deflection for damped case with 1% damping ratio. However, there is not any damping effect when the frequency of harmonic load is greater than 4 Hz.

리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석 (A multi-field CAE analysis for die turning injection application of reservoir fluid tank)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

Dynamic analysis of ROV cable considering the coupling motion of ROV cable systems

  • Cho, Kyu Nam;Song, Ha Cheol;Hong, Do Chun
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.429-440
    • /
    • 2004
  • Remotely Operated Vehicle of 6000-meters is a new conceptual equipment made to replace the manned systems for investigating the deep-sea environment, and all of the ROV systems in operational condition strongly depend on the connecting cables. In this point of view dynamics of the ROV cable system is very important for operational and safety aspects as a cable generally encounters great tension. Researches have been executed on this problem, and most of papers have been mainly focused on the operational condition of ROV system in deep sea. This paper presents the dynamic cable response analysis during ROV launching condition rather than the operational one in order to provide the design guide of a ROV cable system in this circumstance, considering the coupling effects between cable and wave-induced ship motion. To obtain the variations of cable tensions during a ROV launching, a pre-stressed harmonic response analysis was carried out. Wave-induced tensions of the cable during ROV launching were obtained in real sea states using FE modeling, and the basic design guide of a ROV cable system was obtained.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

ISG용 매입형 영구자석 동기 전동기 무부하 선간 역기전력 고조파 저감설계 (The Harmonic Reduction Design of IPMSM No-load line-line Back-EMF for ISG)

  • 이진규;정재우;김성일;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.754-755
    • /
    • 2008
  • This paper presents a method for reducing the Total Harmonic Distortion(THD) of line-line back_EMF of the IPMSM with distributed winding under the no-load condition. Firstly, the specific harmonic components of line-line back EMF are reduced considering with winding factor. Secondly, THD of line-line back EMF is minimized according to change of pole angle using by Space harmonic Analysis. Finally, the optimal design for minimizing the THD is conducted using response surface methodology with finite element analysis. The validity of the design method dealt with in this paper is demonstrated by comparison between the THD of optimal model and initial model.

  • PDF

MRA에서 특성값의 측정단위와 수치형태에 따른 종합 만족도 산출 방법 (Calculation of Composite Desirability Function According to the Measurement Unit and Numerical Pattern of Characteristics in the Multiple Response Analysis)

  • 최성운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 추계학술대회
    • /
    • pp.565-572
    • /
    • 2009
  • This paper presents the optimization steps with weight and importance of estimated characteristic values in the multiresponse surface analysis(MRA). The research introduces the shape parameter of individual desirability function for relaxation and tighening of specification bounds. The study also proposes the combinded desirability function using arithmetic, geometric and harmonic means considering the measurement unit and numerical pattern.

  • PDF

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.