• Title/Summary/Keyword: Harmful gas emission

Search Result 82, Processing Time 0.023 seconds

Investigation of Emission Gas by using the Intake Manifold Gasket Blade (흡기 매니폴드 가스켓 블레이드 적용에 따른 배출가스 고찰)

  • Lee, Minjung;Kim, Taejung;Shin, Yunchan;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.54-61
    • /
    • 2018
  • Incomplete combustion in automotive engines is a major cause of harmful exhaust gases. In this study, to prevent incomplete combustion and reduce exhaust gas emissions, a gasket blade for increasing the air velocity was applied to the intake manifold, and the change in exhaust gas was investigated theoretically and experimentally. First, simulation analysis for flow according to the number and angle of the gasket blade was performed using a 3D flow analysis program. As an analysis result, the internal average velocity of the gasket blade was optimum at 6-blade with an angle of $30^{\circ}$. Based on the simulation results, experiments were conducted to verify the effects of the gasket blades on the exhaust gas in a non-load engine simulation system. As the engine speed was increased from 2000 to 4000 rpm, exhaust gases of HC, CO, and NOx decreased by 23.4%, 16.5%, and 3.8%, respectively, and the emission decreasing effect was reduced.

An Experimental Study on Application of Biodiesel Fuel in Direct Injection Diesel Engine (직접 분사식 디젤기관에서 바이오디젤유의 적용에 관한 실험적 연구)

  • Oh, Y.I.;Choi, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.818-823
    • /
    • 2001
  • Because the exhaust emissions from automobiles are increased, our environment is faced with very serious problems related to the air pollution in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. Lots of researcher have been attempted to develop various alternative fuel on purpose to reduce these harmful emissions. In this study, the potential possibility of esterfied rice bran oil which is a kind of biodiesel fuel was investigated as an alternative fuel for diesel engine. And, we tried to analysis not only total hydrocarbon but hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of exhaust emission. Individual hydrocarbon$(C_1\simC_6)$ as well as total hydrocarbon of biodiesel fuel is reduced remarkably than that of diesel fuel in this experiment.

  • PDF

Butane Working Capacity Evaluation of HC Adsorption Filter for Evaporative Gas to Satisfy PZEV Regulation (PZEV 대응 증발가스 흡착필터의 부탄 흡탈착 능력 평가)

  • Kim, Deok-Jung;Lee, Gee-Soo;Kim, Hyun-Chul;Heo, Hyung-Seok;Na, Byung-Chul;Choi, Seung-Bae;Ra, Wan-Yong;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • The continued rise in the number of automobiles on the roads is prompting air pollution to emerge as a serious problem due to the harmful exhaust gas emissions throughout the world. Specifically, based on the exhaust gas regulation in North America represented by PZEV, the regulation on evaporative emission, which originates from the intake manifold system when the engine is stopped, is substantially being intensified. And the technology that can meet and satisfy these regulations has been needed. This study aimed to analyze and evaluate the butane working capacity (BWC) of HC adsorption filter according to the shape of it, which was developed to reduce evaporative emission, and the effect of HC adsorption filter on the engine performance. As a results, HC adsorption filter of the plate type, which was improved compared to that of the corrugated type and also became thinner, indicates higher absorption performance compared to the corrugated one. The absorption performance of the honeycomb type, derived from improving the shape of plate type, is 33.5% higher than that of the corrugated type. However, there was no significant difference in engine performance in all shapes.

Development of Large-sized Propane Engine for Emission Reduction of Construction Machinery (건설기계의 배출가스 저감을 위한 대형 프로판 전용 엔진 개발)

  • Yongrae Kim;Cheolwoong Park;Hyungjun Jang;Young Choi;Moonyong Jeong;Myunghoon Han;Donghoon Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.91-97
    • /
    • 2023
  • Aging construction machinery and vehicles with old diesel engines usually have a long life span, so they continue to emit harmful emissions. Therefore, replacing these older diesel engines with engines that meet the latest emisstion standard is expected to help improve air quality, and engines with propane fuels, which are easily available at construction sites, can be an appropriate alternative. In this study, a propane fueled engine was developed based on a 6.8-liter CNG engine, and technologies such as gas injectors, exhaust gas recirculation (EGR), and enhanced catalysts were applied. As a result, nitrogen oxides achieved half of the emission performance at the Stage-V level, the latest emission standard, while securing diesel engine output and torque in the same class.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.

Why is the Environmental Management necessary for Telecommunication Operators? (통신사업자에게 환경경영이 왜 필요한가?)

  • Park, Tae-Dong;Kang, Wang-Gyu;Go, Young-Keun;Kim, Bo-Gyeom;Lee, Won-Hyeong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.235-237
    • /
    • 2007
  • Concerns on environmental issues and global warming are increasing worldwide. Environmental regulations such as Tokyo Protocol, RoHS, WEEE are also getting harder and harder and used as trade barriers. Different from other manufacturing industries, information and communication industry is basically environment friendly-low emission of harmful materials and little consumption of energy. But information and communication industry can contribute to world environment by recycle articles in disuse and properly process discarded trash. Furthermore, by using more renewable energy, it can reduce the $CO_2$ emission, one of the major the green house gas.

  • PDF

Regulation Standard of Fine Particles and Control Techniques of Emission Sources (미세먼지 관리기준과 발생원별 관리방안)

  • Park, Haewoo;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.486-503
    • /
    • 2013
  • This paper has comprehensively reviewed fine dust control technology from emission sources. Owing to the stringent national regulation, domestic industries have made consistent efforts to develop the high efficiency facilities since 1960s. In these days, harmful particulate pollutants including dioxins and PAHs as well as $PM_{2.5}$ are also of critical interests in government and civic groups. In addition, simultaneous treatment of gas and particles is being widely studied. It is believed that hybrid facilities which integrate a few advanced equipment may meet the atmospheric guidelines.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses (온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성)

  • Choi, Byungchul;Lee, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.