• Title/Summary/Keyword: Harmful Algal Blooms(HABs)

Search Result 44, Processing Time 0.019 seconds

Effect of Yellow Clay on the Oxygen Consumption Rate of Korean rockfish, Sebastes schlegelii

  • Lee, Chang-Kyu;Kim, Wan-Soo;Park, Young-Tae;Jo, Q-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • Yellow clay dispersion has been applied to minimize fisheries impact by the red tide Cochlodinium polykrikoides blooms in Korean coasts since 1995. The present preliminary study documents the effect of yellow clay on Korean rockfish, Sebastes schlegelii, in terms of oxygen consumption rate (OCR). The OCR in the low clay suspension (0.05 and 0.23 %, w/w) showed normal level compared to the control. In contrast, the OCR for each one of three replicates in the high clay suspension (1.16 and 5.58 %, w/w) was not returned to the previous level that clay was not treated, indicating that high clay suspension (${\geq}1.16%$, w/w) might give negative effect on Korean rockfish. Overall, this result suggests that field application of clay to control Harmful Algal Blooms (HABs) may not give impact on Korean rockfish once the clay is dispersed in a low concentration (${\leq}0.23%$). In order to understand the changes of OCR in the repeated exposure to clay, it is required to do further studies on the changes of OCR when the fish is exposed to clay repeatedly after recovery in the normal seawater.

Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent (양이온성 고분자(polyethylenimine)가 코팅된 알지네이트/폐바이오매스 복합 흡착소재를 사용한 유해 미세조류 Microcystis aeruginosa의 제거)

  • Kim, Hoseon;Byun, Jongwoong;Choi, In Tae;Park, Yun Hwan;Kim, Sok;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.741-748
    • /
    • 2019
  • As the occurrence of harmful algal blooms (HABs) have become severe in precious water resources, the development of efficient harmful algae treatment methods is considering as an important environmental issue for sustainable conservation of water resources. To treat HABs in water resources, various conventional physical and chemical methods have been utilized and showed treatment efficiency, However, these methods can lead to discharging of cyanotoxins into the water bodies by chemical or physical algal cell lysis or destruction. Thus, to overcome this limitation, the development of safe HABs treatment methods is required. In the present study, adsorption technology was investigated for the removal of harmful algal species, Microcystis aeruginosa from aqueous phases. Industrial waste biomass, Corynebacterium glutamicum biomass was valorized as biosorbent (PEI-modified alginate/biomass composite fiber; PEI-AlgBF) for M. aeruginosa through immobilization with alginate matrix and cationic polymer (polyethylenimine; PEI) coating. The functional groups characteristic of PEI-Alg was determined using FT-IR analysis. By adsorption process used PEI-AlgBF, 52 and 67% of M. aeruginosa could be removed under the initial density of M. aeruginosa 200×104 cells mL-1 and 50×104 cells mL-1, respectively. As the increasing surface area of PEI-AlgBF, the removal efficiency was increased. In addition, we could find that adsorptive removal of M. aeruginosa has occurred without any M. aeruginosa cell lysis and destruction.

Clay-based Management for Removal of Harmful Red Tides in Korea: A Multi-perspective Approach

  • Choi, Moon-Hee;Lee, Soon Chang;Oh, You-Kwan;Lee, Hyun Uk;Lee, Young-Chul
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Periodically, harmful algal blooms (HABs) have occurred, with impacts on various areas including public health, tourism, and aquatic ecosystems, especially aquacultured and caged fisheries. To prevent or manage invasions of HABs into fish farms on an emergency basis, many methods have been proposed. Frequently over the past 30 years in coastal countries, treatments of clay and clay mixed with polyaluminum chloride (PAC) and chitosan have been tested for HAB-removal effectiveness in both the laboratory and the field. In Korea, yellow loess clay (hwangto) has been dispersed using electrolytic clay dispensers, both to decrease the amount of yellow loess clay's usage in containers and enhance HAB-removal efficiency. However, this emergency method has limitations, among which is the requirement for more effective controlling agents for field applications. Thus, in this paper, we review technologies for clay-based red tides prevention and control and their limitations, and, further, introduce next-generation algicidal technologies for the emergency protection of fish farms.

Rapid Detection of Cochlodinium polykrikoides by Sandwich Hybridization Integrated with Invertase Assay (Invertase 분석이 통합된 sandwich hybridization에 의한 Cochlodinium polykrikoides의 신속 검출)

  • Kang, Mingyeong;Park, Mirye;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.627-633
    • /
    • 2019
  • Rapid and accurate identification of marine microalgae causing harmful algal blooms (HABs) is a crucial tool for predicting and managing HABs. We previously developed a nuclease protection assay sandwich hybridization (NPA-SH) method for the in situ detection of blooming microalgae Cochlodinium polykrikoides. In this study, we improved the applicability of the NPA-SH method for the detection of C. polykrikoides by simplifying the reaction step. For this purpose, invertase (INV) was conjugated to the signal probe instead of using fluorescence, and sucrose was used as a reactant to induce a color reaction. The INV-signal probe conjugation was confirmed by SDS-PAGE and epifluoromicroscopy. The treatment time and appropriate amounts of the probe and sucrose that optimized the reaction were determined. As a result, the developed INV-SH reduced the treatment time in the field compared with NPA-SH, and also enabled the use of a relatively small volume and low-priced personal glucose meter, as well as an absorbance meter. INV-SH is the first C. polykrikoides species identification technology to which INV has been applied and could be an improved field technique.

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods (유해 남세균 유래 마이크로시스틴의 위해성과 제거 방안 고찰)

  • Sok Kim;Yoon-E Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.370-385
    • /
    • 2023
  • Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties(characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.

Red to Red - the Marine Bacterium Hahella chejuensis and its Product Prodigiosin for Mitigation of Harmful Algal Blooms

  • Kim, Doc-Kyu;Kim, Ji-Hyun F.;Yim, Joung-Han;Kwon, Soon-Kyeong;Lee, Choong-Hwan;Lee, Hong-Kum
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1621-1629
    • /
    • 2008
  • Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the $\gamma$-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations ($\sim$l ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.

A Study on the Relationship between Cyanobacteria and Environmental Factors in Yeongcheon Lake (영천호에서 남조류 발생과 환경요인의 관련성 연구)

  • Lee, Hyeon-Mi;Shin, Ra-Young;Lee, Jung-Ho;Park, Jong-geun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics and correlations of the Yeongcheon Lake in order to reduce the occurrence of harmful cyanobacteria. In this study, we investigated the water quality and phytoplankton of the lake from May to November in 2017. Correlation and data mining analyses were performed to analyze the relationship between the two factors. The water temperature was lowest at the point where the Yeongcheon Lake inflow occurs at Imha Lake. It was highest at the point where the outflow occurs to Angye Lake. The pH was also highest at the outflow point, but in the case of DO, it was highest at the midpoint between the inflow and outflow. The main cyanobacteria that emerged during the study period were Oscillatorialimosa, Microcysti saeruginosa and Aphanizomenon flos-aquae. As a result of correlation analysis, the water temperature, inflow, COD loading, TOC loading at the inflow point of the Yeongcheon Lake were the items that were related to the harmful cyanobacteria. The data mining analysis indicated that the TP loading and harmful cyanobacteria in the inflow point of the Yeongcheon Lake were influential on the detrimental cyanobacteria in the Yeongcheon Lake outflow point. When the TP loading was less than 39.0 kg/day at the inflow site, it was expected that the amount of harmful cyanobacteria could be maintained below 10,000 cells/mL.

The Rapid Differentiation of Toxic Alexandrium and Pseudo-nitzschia Species Using Fluorescent Lectin Probes

  • Cho, Eun-Seob;Park, Jong-Gyu;Kim, Hak-Gyoon;Kim, Chang-Hoon;Rhodes, Lesley L.;Chung, Chang-Soo
    • Journal of the korean society of oceanography
    • /
    • v.34 no.3
    • /
    • pp.167-171
    • /
    • 1999
  • Since toxic Alexandrium catenella and non-toxic A. fraterculus are morphologically similar, they are difficult to discriminate under the light microscope. However, a novel technology, such as fluorescein isothiocyanate (FITC)-conjugated lectin probes enables easy and rapid differentiation. Toxic A. catenella bound seven different lectins, whereas the non-toxic A. fratercuzus did not bind Arachis hypogaea (PNA) lectin. In addition, Pseudo-nitrschia species in this study were also difficult to identify to species level with light microscope techniques, but it was possible to classify them using fluorescent lectins. Pseudo-nitzschia multistriata, P. subfraudulenta and P. pungens bound Canavalia ensiformis (ConA), whereas P. subpaclfica did not, and P. pungens also bound Ricinus communis (RCA). These results imply that lectin could be used as a critical tool in the differentiation of P. multistriata, P. subfraudulenta and P. pungens. However, P. subpacifica was not differentiated by the lectins tested. Therefore, it isconcluded that lectin probes are useful for discriminating toxic A. catenella from non-toxic A. fraterculus, and for the identification of some Pseudo-nitzschia species. In addition, this method has a great potential to speed and detection between non-toxic and toxic harmful algal blooms (HABs) in Korean biotoxin monitoring systems.

  • PDF

Characteristics of Algicide Produced by Micrococcus luteus SY-13 Inhibiting Cochlodinium polykrikoides and the Effects on Marine Organisms (적조생물 Cochlodinium polykrikoides를 저해하는 Micrococcus luteus SY-13이 생산하는 살조물질의 특성과 해양생물에 미치는 영향)

  • Kim, Min-Ju;Jeong, Seong-Yun;Cha, Mi-Sun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.439-449
    • /
    • 2008
  • Algicidal bacterium was isolated from sea water during the declining period of Cochlodinium polykrikoides blooms and this bacterium had a significant algicidal activity against C. polykrikoides. In this study, algicidal bacterium was identified on the basis of biochemical and chemotaxonomic characteristics, and analysis of 16S rDNA sequences. The algicidal bacterium showed 98.6% homology with Micrococcus luteus ATCC $381^T$. Therefore, this bacterium was designated Micrococcus luteus SY-13. The optimal culture conditions of the algicidal bacterium was $25^{\circ}C$, initial pH 8.0, and 3.0% NaCl concentration. M. luteus SY-13 is assumed to produce secondary metabolites which have algicidal activity. When 10% culture filtrate of this strain was applied to C. polykrikoides ($1.0\;{\times}\;10^4\;cells/ml$) cultures, over 98% of C, polykrikoides cells were destroyed within 6 hours. The culture filtrate of M. luteus SY-13 exhibited similar algicidal activity after heat-treatment at $121^{\circ}C$ for 15 min. While algicidal activity remained in filtrates with pH adjusted to 8.0, loss of algicidal activity occurred when the pHs of filtrates were adjusted to over 9.0 or heat-treated at $121{\times}180^{\circ}C$ for 1 hour. M. luteus SY-13 showed significant algicidal activities against C. polykrikoides (98.9%) and a wide algicidal range against various harmful algal bloom (HAB) species. However, there was no algicidal effect on diatom and marine livefood organisms except Isocrysis galbana. These results suggest that M. luteus SY-13 could be a candidate for use in the control of HABs.