• Title/Summary/Keyword: Hardware-in-the-loop simulation(HILS)

Search Result 194, Processing Time 0.028 seconds

A Research on Naval Electronic Warfare System Engagement HILS Technology (해상 전자전체계 조우 HILS 연구)

  • Shin, Dong-Cho;Lee, Jeong-Hoon;Ryu, Si-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.785-792
    • /
    • 2010
  • This paper on the Research of Naval Electronic Warfare System HILS(Hardware In the Loop System) describes the EW engagement HILS construction method for evaluation of the operational concept analysis on active RF Decoy in staying in the air and the deceit ability to anti-ship missile seeker. We obtain the EW M&S technology of EW engagement HILS and EW efficiency analysis from this project. This Naval Electronic Warfare System HILS technology will support Active Decoy Development Project and any other HILS of EW weapon in KOREA ARMY/NAVY/AIR FORCE.

Implementation and Experiment Result of Hardware-in-the-Loop Simulation(HILS) System for The Verification of ITER AC/DC Converter Control (ITER AC/DC Converter Control 검증을 위한 Hardware-in-the-Loop Simulation(HILS) System 구축 및 실험)

  • Suh, Jae-Hak;Oh, Jong-Seok;CHOI, Jungwan;SHIN, Hyun-Kook;Cha, Hanju;Park, In-Kwon
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.221-222
    • /
    • 2015
  • ITER AC/DC Converter의 부하는 초전도 코일이며 이에 필요한 컨버터는 총 6종류(2상한:TF, 4상한:PF, CS, VS, CCU/L, CCS)가 있다. 이중 VS 컨버터(${\pm}1050V$, ${\pm}22.5kA$)는 6대가 직렬로 접속되어 운전되고 CS 컨버터(${\pm}1050V$, ${\pm}4.5kA$)는 4대가 직렬로 접속되어 운전한다. 이들 컨버터용 제어기의 개발 단계에서 실 부하상태를 준비하는 것은 어렵기 때문에 $RTDS^{TM}$ (Real Time Digital Simulator)를 이용하여 제어 대상인 High Power 부분과 초전도 코일의 동적 시스템 모델을 HILS(Hardware-in-the-Loop Simulation)로 구축하였다. 본 논문에서는 HILS 구축에 대한 상세한 내용과 이를 활용하여 Control 시스템을 검증한 결과를 서술하였다.

  • PDF

Development of Infrared Target for Dual-Sensor Imaging Seeker's Test and Evaluation in HILS System (이종센서 영상탐색기 시험평가를 위한 적외선 표적원 개발)

  • Park, Changhan;Song, Sungchan;Jung, Sangwoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.898-905
    • /
    • 2018
  • In this work, infrared targets for a developed hardware-in-the-loop simulation(HILS) system are proposed for a performance test of a dual-sensor imaging seeker equipped with an infrared and a visible sensor that can lock and track for ground and air targets. This integrated system is composed of 100 modules of heat and light sources to simulate various kinds of target and the trajectory of moving targets based on scenarios. It is possible to simulate not only the position, velocity, and direction for these targets but also background clutter and jamming environments. The design and measurement results of an infrared target, such as the HILS system configuration, developed for testing and evaluation of a dual-sensor imaging seeker are described. In the future, it is planned to test the lock-on and tracking performance of an imaging seeker equipped with single or dual sensors dynamically in real time based on a simulation flight scenario in the developed HILS system.

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS (Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구)

  • Ryu, Jung-Hwan;Yoon, Ma-Ru;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Development of Navigation HILS System for Integrated Navigation Performance Analysis of Large Diameter Unmanned Underwater Vehicle (LDUUV) (대형급 탐색용 무인잠수정 복합항법 성능 분석을 위한 항법 HILS 시스템 개발)

  • Yoo, Tae-Suk;Kim, Moon Hwan;Hwang, Jong Hyun;Yoon, Seon Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • This paper describes the development of a navigation HILS (hardware in the loop simulation) system for an integrated navigation performance analysis of a large diameter unmanned underwater vehicle (LDUUV). The HILS system was used for the performance analysis of the LDUUV. When a conventional HILS system is used, it is not possible to calculate the velocity and position using an inertial navigation system (INS). To cope with this problem, an external acceleration was generated. To evaluate the proposed method, we compare the results of a Monte Carlo simulation and navigation HILS experiment.

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.