• Title/Summary/Keyword: Hardware Engineering

Search Result 3,636, Processing Time 0.03 seconds

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Development of a Photoplethysmographic method using a CMOS image sensor for Smartphone (스마트폰의 CMOS 영상센서를 이용한 광용적맥파 측정방법 개발)

  • Kim, Ho Chul;Jung, Wonsik;Lee, Kwonhee;Nam, Ki Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4021-4030
    • /
    • 2015
  • Pulse wave is the physiological responses through the autonomic nervous system such as ECG. It is relatively convenient because it can measure the signal just by applying a sensor on a finger. So, it can be usefully employed in the field of U-Healthcare. The objects of this study are acquiring the PPG (Photoplethysmography) one of the way of measuring the pulse waves in non-invasive way using the CMOS image sensor on a smartphone camera, developing the portable system judging stressful or not, and confirming the applicability in the field of u-Healthcare. PPG was acquired by using image data from smartphone camera without separate sensors and analyzed. Also, with that image signal data, HRV (Heart Rate Variability) and stress index were offered users by just using smartphone without separate host equipment. In addition, the reliability and accuracy of acquired data were improved by developing additional hardware device. From these experiments, we can confirm that measuring heart rate through the PPG, and the stress index for analysis the stress degree using the image of a smartphone camera are possible. In this study, we used a smartphone camera, not commercialized product or standardized sensor, so it has low resolution than those of using commercialized external sensor. However, despite this disadvantage, it can be usefully employed as the u-Healthcare device because it can obtain the promising data by developing additional external device for improvement reliability of result and optimization algorithm.

A Requirement Priority Process of Embedded Systems based on the Dependency and Aspect (의존과 관점 기반 임베디드 시스템의 요구사항 우선순위 프로세스)

  • Hwang, Wi-Yong;Kang, Dong-Su;Song, Chee-Yang;Seong, Jae-Seok;Baik, Doo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.767-790
    • /
    • 2009
  • Setting up a priorityfor an embedded system is greatly significant because a release plan at the early stage of product developments can properly be established through right decision making procedures based on the priorities. For instance, both dependencies among requirements and the aspects of product developers should be considered into the priorities to improve the embedded system. Especially, trade-offs among the requirements, which are quite different depending on H/W and S/W architecture styles they use, should be acknowledged without exception. However, the selection process on the priority has hitherto been fairly systematic in the existing environment where hardware and software are not being considered at once. Therefore, this paper suggests an dependency and aspect-based model and process for the requirements of the priority. For this, the paper analyzes the trade-offs between the requirements depending on the disparate Architecture styles of H/W and S/W, and it also reflects the viewpoints of the developers. For thelast thing, the model and process suggested will be applied to the case of the development of both cell phones and cameras to gain authenticity and reliability. In conclusion, the danger occurring when the release plan is constructed can be minimized by screening the priorities that optimizes the embedded system more explicitly.

Direct Pass-Through based GPU Virtualization for Biologic Applications (바이오 응용을 위한 직접 통로 기반의 GPU 가상화)

  • Choi, Dong Hoon;Jo, Heeseung;Lee, Myungho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • The current GPU virtualization techniques incur large overheads when executing application programs mainly due to the fine-grain time-sharing scheduling of the GPU among multiple Virtual Machines (VMs). Besides, the current techniques lack of portability, because they include the APIs for the GPU computations in the VM monitor. In this paper, we propose a low overhead and high performance GPU virtualization approach on a heterogeneous HPC system based on the open-source Xen. Our proposed techniques are tailored to the bio applications. In our virtualization framework, we allow a VM to solely occupy a GPU once the VM is assigned a GPU instead of relying on the time-sharing the GPU. This improves the performance of the applications and the utilization of the GPUs. Our techniques also allow a direct pass-through to the GPU by using the IOMMU virtualization features embedded in the hardware for the high portability. Experimental studies using microbiology genome analysis applications show that our proposed techniques based on the direct pass-through significantly reduce the overheads compared with the previous Domain0 based approaches. Furthermore, our approach closely matches the performance for the applications to the bare machine or rather improves the performance.

Development of Metrics to Measure Reusability of Services of IoT Software

  • Cho, Eun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.151-158
    • /
    • 2021
  • Internet of Things (IoT) technology, which provides services by connecting various objects in the real world and objects in the virtual world based on the Internet, is emerging as a technology that enables a hyper-connected society in the era of the 4th industrial revolution. Since IoT technology is a convergence technology that encompasses devices, networks, platforms, and services, various studies are being conducted. Among these studies, studies on measures that can measure service quality provided by IoT software are still insufficient. IoT software has hardware parts of the Internet of Things, technologies based on them, features of embedded software, and network features. These features are used as elements defining IoT software quality measurement metrics. However, these features are considered in the metrics related to IoT software quality measurement so far. Therefore, this paper presents a metric for reusability measurement among various quality factors of IoT software in consideration of these factors. In particular, since IoT software is used through IoT devices, services in IoT software must be designed to be changed, replaced, or expanded, and metrics that can measure this are very necessary. In this paper, we propose three metrics: changeability, replaceability, and scalability that can measure and evaluate the reusability of IoT software services were presented, and the metrics presented through case studies were verified. It is expected that the service quality verification of IoT software will be carried out through the metrics presented in this paper, thereby contributing to the improvement of users' service satisfaction.

A Study of Functional Performance on Smartphone according to Age Difference (나이 차이에 따른 스마트폰 기능 수행도 연구)

  • Yoon, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.318-323
    • /
    • 2019
  • In this study, we examined the differences in age among the various functions required for everyday life through smartphone using environment. The subjects were composed of 30 young adults and 30 elderly people. We set up 12 tasks to evaluate the performance of smartphone functions. At the same time, a questionnaire about smartphone usage habits was made. The questionnaire consists of items related to user history and usage habits. ANOVA analysis was performed using Minitab version 14, and statistically significant differences were found in 10 tasks. The result of the actual values for each task showed that the elderly generally took more time to perform all the tasks than the younger ones. Especially, the tendency of the task which requires a lot of keystrokes was revealed. Especially, in the case of a task requiring a lot of keystrokes, the tendency was remarkable. Young adults have found that they use all functions uniformly overall, and the functions used by the elderly were biased toward some functions, such as dialing, text, kakao talk, and searching. These results suggest that young people use smartphones more frequently than elderly people, and as they become accustomed to using smartphones, the time required to perform functions may be shortened. We suggest that it is necessary to design in terms of hardware or software so that the elderly people can input easily and conveniently.

Design of I-123 Nuclide production system (I-123 핵종생산장치 시스템 설계)

  • Jung, Hyun-Woo;You, Jae-Jun;Kim, Byung Il;Chun, KwonSoo;Lee, Ji-Seub;Park, Hyun;Choi, JunYong;Oh, Se-Young;Bang, Sang-Kwon;Lee, Dong Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.496-499
    • /
    • 2014
  • Xe Gas is moved to Target from GPM. It is Used to feasible nuclear reaction from proton of 30MeV Cyclotron being investigated by the Xe-124 Gas target System. This system is divided into four parts. Hardware was constructed by solidworks and Helium Supply is to cool the Havor Foil. Water has the job of cooling down the temperature when Xe Gas is being investigated in the target. Temperature and pressure gauges are attached to be checked easily. GPM(Gas Process Manifold) has the part that prepares to transport Xe Gas. There are Storage Vessel that stores Xe Gas, the cold trap that filters humidity and impurity and lastly storage vessel that temporarily stores Xe Gas. HCS(Helium Circulation System) using the Helium to cleaning and cooling. these parts are used to SIEMENS PLC and Pcvue Program. Because It is more comfortable and easy maintenance.

  • PDF

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

A study on the creation of mission performance data using search drone images (수색용 드론 이미지를 활용한 임무수행 데이터 생성에 관한 연구)

  • Lee, Sang-Beom;Lim, Jin-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Along with the development of the fourth industry, the public sector has increasingly paid more attention to search using drones and real-time monitoring, for various goals. The drones are used and researched to complete a variety of searching and monitoring missions, including search for missing persons, security, coastal patrol and monitoring, speed enforcement, highway and urban traffic monitoring, fire and wildfire monitoring, monitoring of illegal fishing in reservoirs and protest rally monitoring. Police stations, fire departments and military authorities, however, concentrate on the hardware part, so there are little research on efficient communication systems for the real-time monitoring of data collected from high-performance resolution and infrared thermal imagining cameras, and analysis programs suitable for special missions. In order to increase the efficiency of drones with the searching mission, this paper, therefore, attempts to propose an image analysis technique to increase the precision of search by producing image data suitable for searching missions, based on images obtained from drones and provide the foundation for improving relevant policies and establishing proper platforms, based on actual field cases and experiments.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.