• 제목/요약/키워드: Hardness of 6061

검색결과 66건 처리시간 0.019초

SiCp/6061Al합금복합재료의 시효거동 (Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites)

  • 안행근;유정희;김석원;우기도
    • 한국재료학회지
    • /
    • 제10권12호
    • /
    • pp.793-798
    • /
    • 2000
  • 석출경화형 6061Al기지합금과 SiC입자크기를 0.7$\mu\textrm{m}$ 및 7.0$\mu\textrm{m}$로 변화시켜 강화한 SiCp/6061Al 합금복합재료의 시효 거동을 경도측정, DSC 시험 및 TEM관찰을 통하여 조사하였다. 17$0^{\circ}C$에서 등온시효시 6061Al기지합금에 비하여 복합화한 0.7$\mu\textrm{m}$SiCp/6061Al합금복합재료 및 7.0$\mu\textrm{m}$SiCP/6061Al합금복합재료에서 최고경도에 도달하는 시간이 짧았으며, 또한 강화재의 크기가 큰 7.0$\mu\textrm{m}$SiCp/6061Al합금복합재료에서 시효촉진이 보다 크게 나타났다. 이것은 복합화 및 SiC입자크기 증가에 따른 전위 밀도 상승에 기인한다. 6061Al기지합금 및 복합재료에서 최고시효처리시의 주강화상은 봉상의 중간상 $\beta$(Mg$_2$Si)이며,$\beta$상 생성의 활성화에너지는 복합화 및 SiG입자크기의 증가에 따라 감소되었다

  • PDF

양극산화 알루미늄 합금6061의 초순수 물 윤활에서의 트라이볼로지적 특성 (Tribological Characteristics of Anodized Al 6061 Under Deinoized Water Lubricated Reciprocating Condition)

  • 정준호;조민행
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.59-64
    • /
    • 2017
  • This study investigates friction and wear characteristics of anodized aluminum (Al) alloy 6061 by using a reciprocating tribotester. The diameter and height of the specimen are 30 mm and 10 mm, respectively. The surface roughness of the mirrored-surface is approximately $0.01{\sim}0.02{\mu}m$, and it is used throughout the current study. As a result of anodizing, the depth and diameter of the nanopore are approximately $25{\mu}m$ and 30-40 nm, respectively. The testing conditions are as follows: loads of 1, 3, and 5 N; a frequency of 1 Hz; a stoke of 3 mm; and a duration of 1800 s. We use deionized water with a volume of approximately $25{\mu}l$, as the lubricant. Micro Vickers hardness measurements show that mirrored-surface specimens had lower hardness values than anodized specimens. Further, their coefficients of friction are lower than those of the anodized samples, and the width of their wear track increases with load, as expected. The anodized specimens' coefficients of friction increase with stable frictional behavior and exhibit insignificant load dependence. Further, we observe that the width of the wear track is less than that of the mirrored-surface specimens, and micro cracks are present near it. Moreover, the anodizing process increases the hardness of the samples, improving their wear resistance. These results indicate that nanoporous structures are not effective in lowering friction under the water-lubricated condition.

3차원 적층 제조 공정(DED) 기반 Al-6061+Al-12Si 합금 조합 실험 (Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process)

  • 전서연;박수원;송용욱;박지원;박현영;이보람;최현주
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.463-469
    • /
    • 2023
  • Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α-Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.

고강도 알루미늄 튜브의 온간 하이드로포밍 특성 (Warm Hydroforming Characteristics of High Strength Aluminum Tubes)

  • 이문용;강창룡;이상용
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.403-408
    • /
    • 2004
  • Hydroformability of 6061 and 7075 aluminum tube materials was studied by warm hydroforming experiments. A special tooling and heating system was designed and manufactured in order to perform warm hydroforming between room temperature and $300^{\circ}C$. The control of tube temperature for warm hydroforming was made by the control of temperature of oil medium. Warm hydroformability was analyzed by tube appearances, tube elongation and hardness values. Hydroforming characteristics of 6061 and 7075 tubes showed different temperature dependence between room temperature and $300^{\circ}C$. The difference in hydroformabilities of 6061 and 7075 at elevated temperatures was interpreted by the different sensitivity to dynamic strain aging of both aluminum materials.

파일-업 재료에 대한 나노 압입 시험기의 경도 측정값 교정 (Correction of the hardness measurement for pile-up materials with a nano indentation machine)

  • 박문식
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.98-106
    • /
    • 2016
  • 본 연구는 공업용 응용이 많은 알루미늄 또는 구리와 같은 재료를 나노 압입 시험기에 의하여 탄생계수 및 경도 값을 얻을 때 파일-업(pile-up) 현상이 생기는 경우 계측 값을 교정할 수 있는 방법에 대해 다룬다. 나노 압입 시험기에 의해 얻어지는 탄성계수와 경도의 측정치는 접촉면적의 피팅 (fitting) 식에 의존하게 되는데 이는 오로지 싱크-인(sink-in) 재료에만 유효하다. 그러므로 싱크-인이 아닌 파일-업인 많은 무른 공학재료들에 있어서는 그 접촉면적이 실제보다 적게 계산되고 따라서 탄성계수와 경도는 높게 계산된다. 본 연구에서는 이미 탄생계수를 알고 있는 파일-업 거동을 보이는 재료의 경우에 경도 값을 교정하는 방법을 제안한다. 이 방법을 경금속인 Al 6061 T6와 C 12200에 적용하기 위해 인장시험, 나노 압입시험, 압입자국 측정, 그리고 유한요소해석을 수행하였다. 압입 자국 측정과 유한요소해석을 흥하여 두 재료 모두 파일-업 거동이 발생하는 것을 알 수 있었다. 제안한 교정 방법은 싱크-인 접촉면적 값을 파일-업 접촉면적 값으로 늘려 주었고 경도 측정값을 낮추어 주었다. 교정된 경도 값은 별도의 연구에서 다룬 변형률 구배 소성을 고려한 유한요소해석 결과와 잘 일치하였다.

금형주조법을 이용한 TiNi/6061Al 지적복합재료의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of TiNi/6061Al Smart Composite by Permanent Mold Casting)

  • 김순국;이준희;윤두표;박영철;이규창;김영희
    • 한국주조공학회지
    • /
    • 제18권6호
    • /
    • pp.534-540
    • /
    • 1998
  • 6061Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by Permanent Mold Casting to investigate the mechanical properties of the smart composites. The composites have showed good interface bonding as a result of the analysis of SEM and EDX. The smartness of composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. The tensile strength of the composites was tested at temperatures between $90^{\circ}C$ and room temperature with increasing amount of pre-strain, and it showed that the tensile strength at $90^{\circ}C$ was higher than that of the room temperature. Especially, the tensile strength of the composite increases with increasing pre-strain. It showed that hardness of matrix was higher than that of common 6061Al alloy.

  • PDF

Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam;Suh, Chang-Min;Murakami, Ri-ichi
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2002
  • Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성 (Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting)

  • 박광훈;박성기;신순기;박영철;이규창;이준희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

Al6061-T6의 마찰교반용접 시 회전 Tool Pin 형상에 따른 기계적 특성 평가 (Mechanical Characteristic Evaluation by Spin Tool of Different Pin Shapes in Friction Stir Welding Al6061-T6)

  • 임병철;김대환;박상흡
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.345-349
    • /
    • 2014
  • In this study, an age-hardened 6061-T6 alloy sheet was used, which is commonly utilized for auto parts. The junction strength characteristics in relation to the stirring speed and welding speed were studied in accordance with the friction stir welding rotation of the tool pin. Micro hardness measurements of A type and B type pins, for a welding speed of 400 mm/min and a tool rotational speed 3000 rpm, were obtained as Hv104 and Hv111, respectively. For a welding speed of 200 mm/min and a tool rotational speed of 2000 rpm, we obtained Hv48 and Hv50 for A and B type pins, respectively. Microstructure observation showed that the stirring portion was fine and uniform, which occurred because of its plastic deformation. In the thermomechanically affected zone, partial recrystallization was present because of the plastic deformation. The crystal grains in the heat affected zone were coarsened due to the heat generated by friction stir welding.

플라즈마 절단 후 제작된 용접부의 기계적 특성

  • 신규인;김형곤;박재학;김성청
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.201-206
    • /
    • 1999
  • The influence of surface preparation methods after plasma cutting on the quality of welding zone is investigated. For comparison. three types of welded specimens are prepared by machining(YM), plasma cutting with light regrinding(WPG) and without regrinding(WP), by using three kinds of materials, carbon steel(S45C), stainless steel(Type304) and aluminum alloy (6061-T6). Nondestructive examination, hardness test, microstructure examination, and fracture toughness test are performed. The results show that there is no appreciable reduction in hardness or fracture toughness in WP specimens. But a little difference in heat affected gone size is observed.

  • PDF