• Title/Summary/Keyword: Hardened State Properties

Search Result 64, Processing Time 0.022 seconds

A Study on The Quality Control of Pre-absorbed Water Light-weight Aggregate Concrete (경량콘크리트 제조를 위한 경량골재 사전흡수수 품질관리방안)

  • Lim, Sang-Jun;Lee, Han-Woo;Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.199-200
    • /
    • 2011
  • Absorption of lightweight aggregate affects the properties of fresh and hardened concrete, so care must be taken. In this study, according to KS F 2533 absorption is measured to aggregate size, submerged time, holding time and practically ways to maintain a constant absorption was to seek. The findings for quality control of the lightweight aggregate concrete mixture is saturation of the surface-dry aggregate humidity 100% after 24 hours immersion in the environment has been stored for more than two days to absorb the state was able to define. Dry density at the surface of the lightweight aggregate and lightweight concrete mix design and placement is possible for it to apply.

  • PDF

Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars (굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향)

  • Baik Dae-Hyun;Yoon Seob;Kim Jung-Bin;Lee Seong-Yeun;Yoon Ki-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

Synthesis and Properties of Calcium Sulfoaluminate Type Expansive (칼슘설포알루미네이트계 팽창재의 제조 및 기초 물성)

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.388-394
    • /
    • 2000
  • The C4A3S clinker was prepared by the solid-state reaction. The mixture of raw materials; calcite, kaoline and gypsum, was fired at 135$0^{\circ}C$ for 1hr and cooled rapidly in air. C4A3S type expansive was made with C4A3S clinker, CaO and CaSO4. The cement replaced by 10 wt.% C4A3S type expansive was investigated by the measurement of the strength(compressive, tensile, flexural) and length change at various curing conditions. Hydration products were mainly ettringite, monosulfate and Ca(OH)2. The densification and the expansion due to the formation of ettringite during the hydration increased strength and reduced the drying shrinkage of hardened cement.

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Compressive strength and mixture proportions of self-compacting light weight concrete

  • Vakhshouri, Behnam;Nejadi, Shami
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under $2000Kg/m^3$.

Engineering Properties of Concrete Using Recycled Aggregate Manufactured by Bar-Crusher (봉파쇄기에 의해 제조된 재생굵은골재를 사용한 콘크리트의 공학적 특성)

  • Baek, Dae-Hyun;Han, Dong-Yeob;Yu, Myoung-Youl;Lee, Gun-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.83-86
    • /
    • 2006
  • This study investigates engineering properties of concrete using recycled coarse aggregated manufactured by bar-crusher. Test showed that Bar-crusher(S) had more effective results at fresh state than cone-crusher(C) and impact-crusher(I). In case of specimens manufactured by S, increase of spindle velocity, incorporating ratio of recycled aggregate and maximum size of aggregate inclined fluidity. As for the hardened concrete, compressive strength of specimens by C or I exhibited lower value than that of S. In addition, specimens using recycled aggregate manufactured by 400rpm and 500rpm of spindle velocity showed less than 10% reduction rate of strength, which is not significant reducing value. It is found that 500rpm of the spindle velocity had the best strength performance, while 600rpm was the worst. Strength value of specimens decreased as incorporating ratio of recycled aggregate inclined, but the strength value of most specimens exhibited less than 10% of reducing rate, assuming favorable result, only at less than 25% incorporating ratio of recycled aggregate.

  • PDF

Determination of Material Properties of Tube using Inverse Engineering and Analytic Method in Tube Bulge Test (역공학과 해석적 방법을 이용한 관재벌지시험에서의 관재물성치 결정)

  • Kim, Tae-Joon;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1508-1516
    • /
    • 2003
  • In numerical analysis for hydroforming process, the stress calculation is effected by flow stress which is general obtained by stress-strain relationship from uni-axial tension test, so the result of the analysis, especially in tube hydroforming, has limitation of accuracy, tubes are made in roll-forming process and become work-hardened. Then roll forming process causes material properties between rolling direction and circumstantial direction of the tube to be different. So it is difficult to predict material behavior in the process condition of bi-axial stress state. In this study, the flow stress of the tube is determined by inverse engineering approach and bulge test that is widely used for formability test in the condition of bi-axial stress. And Hill's quadratic yield function and flow rule are used to consider the anisotropy of the tube in the roll forming process.

Mechanical and Repair Performance of Sprayed Ductile Fiber Reinforced Cememtitious Composite(ECC) (습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능)

  • Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.462-469
    • /
    • 2003
  • This paper presents an experimental study on the potential durability enhancement of infrastructures repaired by a sprayed high ductile fiber-reinforced cementitious composite (ECC). For this study, a PVA-ECC which exhibits sprayable properties in the fresh state and tensile strain-hardening behavior in hardened state was sprayed and tested. The experimental results show that the sprayed ECC exhibits mechanical properties with strain capacity comparable to the cast ECC with the same mix design. During loading, the crack widths of ECC are tightly controlled with an average of 30${\mu}m$. It is also revealed that when sprayed ECC is used as a repair material, ductility represented by deformation capacity at peak load of repaired beams in flexure are obviously increased in comparison to those of commercial prepackaged mortar (PM) repaired beams. In addition to high delamination resistance, the significant enhancement of energy absorption capacity and crack width control in ECC repair system suggest that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete (콘크리트 특성에 미치는 고분말도 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Seung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • Recently, the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high fineness fly ash remains at a low level. As for the fly ash in $3,000{\sim}4,500\;cm^2/g$ class fineness regulated in KS L 5405, it is used by substituting it around the unit weight of cement 20%. Accordingly, the regulation in upper classification is in a situation of being insufficient. Therefore, this study aimed to establish 4000, 6000, and 8000 class of fineness of fly ash and three levels of substitute like 15%, 30%, and 45% in order to analyze the substitute and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, the more replacement ratio and fineness of fly ash increased in the performance not hardened, the more the fluidity increased. This study has found out that the air content decreased, and that there was setting acceleration and it decreased the heat of hydration. In addition, as for the strength properties in a state of performance hardened concrete, the more the replacement ratio and the ratio of water-binding materials increased, the more it had a tendency of being decreased.