• Title/Summary/Keyword: Hardened Cement Paste

Search Result 91, Processing Time 0.031 seconds

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

Characteristics of Mass Reduction Rate of Cement Paste Hardened to High Temperature Conditions by TGA (TGA를 이용한 고온 조건에 노출된 시멘트 페이스트 경화체의 질량감소율 특성)

  • Ji, Woo-Ram;Shin, Ki-Don;Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.169-170
    • /
    • 2018
  • In this study, TGA analysis of hardened cement paste with fire damage was performed. The mass reduction rate of 600 ℃ specimens was about 22 ~ 25%, and the sample of 800 ℃ showed the mass loss rate of 9 ~ 13%. As the target temperature and hold time increased, the mass reduction rate decreased. As the depth increased, the mass reduction rate decreased.

  • PDF

A Prediction Model on Porosity of Hardened Cement Paste under High Temperatures (고온시의 경화된 시멘트 페이스트의 공극률 예측모델)

  • Lee, Jae-Sung;Jung, Sung-Jin;Jung, Young-Han;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • The thermal degradation of concrete results mainly from two mechanisms. The first one is related to phase transformations of constituents at different temperatures. The initial constituents transform to other phases due to elevated temperature. The second mechanism is related to the temperature sensitivity of the mechanical properties of the constituents in concrete. Therefore, the degradation of concrete under high temperatures must be studied from both mechanical and chemical points of view. This study was performed as a basic study to propose the material models of concrete exposed to high temperatures considering above two mechanisms. This study presents a prediction model on the porosity of hardened cement paste considering phase changes according to temperature increase.

Microstructure and Mechanical Strength of Hardened Paste of Hydroxyapatite Cement Containing Whisker Phase (휘스커상을 함유한 수산화아파타이트시멘트 경화체의 미구조-강도 특성)

  • 손영도;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1342-1349
    • /
    • 1999
  • In order to improve the density and the mechanical strength without change in chemical composition the hardened pastes of hydroxyapatite cement were reinforced with powders and/or whiskers of hydroxyapatite. The powders behaved as a seed of hydroxyapatite formation rather than a filler while the whiskers were mrerly dispersed in matrix and capillary pores of the hardened bodies leading to increase in mechanical strength. But the increase in strength But the increase in strength was nnt enough owing to the lack of homogeneous dispersion of the fibers. The highest diametral tensile strength of 18.5 MPa was measured at the hardened hydroxyapatite body in which well-dispersed whisker phase formed uniformly during hydro-thermal curing of power-added and dry-formed hydroxyapatite cement.

  • PDF

Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature (고온 환경에 노출된 시멘트 경화체의 공극 구조 변화)

  • Kang, Seung-Min;Na, Seung-Hyun;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • Hardened cement-based materials exposed to the high temperatures of a fire are known to experience change in the pore structure as well as microstructural changes that affect their mechanical properties and tend to reduce their durability. In this experimental investigation, hardened Portland cement pastes were exposed to elevated temperatures of 200, 400, 600, 800, and $1000^{\circ}C$ for 60 minutes, and the resulting damage was studied by thermogravimetry (TG), mercury intrusion porosimetry (MIP) and density measurements. These results revealed that the residual compressive strength is increased at temperatures greater than $400^{\circ}C$ due to a small pore size of 3 nm and/or rehydration of the dehydrated cement paste. However, a loss of the residual strength occurs at temperatures exceeding 500 and $600^{\circ}C$. This can be attributed to the decomposition of hydrates such as portlandite and to an increase in the total porosity.

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

An Effect of Blending Materials on the Strength Characteristics of High Strength Cement Composite (고강도 시멘트 복합체의 강도특성에 미치는 혼합재료의 영향)

  • 최일규;김정환;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.330-336
    • /
    • 1994
  • High strength cement composites (W/C=0.1) were prepared by using various blending materials such as SiC whisker and white carbon (hydrated silica: SiO2·nH2O). The effect of various blending materials on the microstructure and strength of the hardened cement paste were investigated in the view of fracture mechanics. The plain specimen showed 101 MPa of flexural strength, 81 GPa of Young's modulus and 1.32 MPam1/2 of fracture toughness. When the blending materials were added to the composites, their values were enhanced to about 110∼138 MPa, 95∼146 GPa and 1.32∼1.87MPam1/2 respectively. The improvement of the mechanical strength for the hardened cement paste may be due to the removal of macropores, the reduction of total porosity, pozzolanic reaction and the increase of various fracture toughening effect.

  • PDF

Numerical modelling of effective thermal conductivity of hardened cement paste

  • Cheng Liu;Qiang Liu;Jianming Gao;Yunsheng Zhang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.567-576
    • /
    • 2023
  • In this study, a 3D microstructure-based model is established to simulate the effective thermal conductivity of cement paste, covering varying influencing factors associated with microstructure and thermal transfer mechanisms. The virtual cement paste divided into colloidal C-S-H and heterogeneous paste are reconstructed based on its structural attributes. Using the two-level hierarchical cement pastes as inputs, a lattice Boltzmann model for heat conduction is presented to predict the thermal conductivity. The results suggest that due to the Knudsen effect induced by the nanoscale pore, the thermal conductivity of air in C-S-H gel pore is significantly decreased, maximumly accounting for 3.3% thermal conductivity of air at the macroscale. In the cement paste, the thermal conductivities of dried and saturated cement pastes are stable at the curing age larger than 100 h. The high water-to-cement ratio can decrease the thermal conductivity of cement paste.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.