• 제목/요약/키워드: Hard Milling

검색결과 60건 처리시간 0.028초

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

볼 엔드밀 가공환경 조건이 고경도 강재의 절삭 특성에 미치는 영향 (Effect of Ball End Mill Cutting Environments on Machinability of Hardened Tool Steel)

  • 이영주;원시태;허장회;박동순
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.245-250
    • /
    • 2003
  • This research conducted milling tests to study effects of cutting environment conditions of ball end mills on the characteristics of hard milling process. KP4 steels and STD11 heat treated steels were used as the workpiece and WC-Co ball end mill tools with TiAIN coated were utilized in the cutting tests. Dry cutting without coolant and semi-dry cutting using botanical oil coolant were conducted and MQL (Minimum Quantity Lubricant) device was used to spray coolant. Cutting forces, tool wear and surface roughness were measured in the cutting tests. Results showed that dry cutting of KP4 and hardened STD11 specimens produced better surface quality and wear performance than MQL spray cutting did.

  • PDF

볼 엔드밀 가공환경 조건이 고경도 강재의 절삭 특성에 미치는 영향 (Effect of Ball End Mill Cutting Environments on Machinability of Hardened Tool Steel)

  • 이영주;원시태
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.45-52
    • /
    • 2004
  • This research conducted milling tests to study effects of cutting environment conditions of ball end mills on the characteristics of hard milling process. KP4 steels and STD11 heat treated steels were used as the workpiece and WC-Co ball end mill tools with TiAlN coated were utilized in the cutting tests. Dry cutting without coolant and semi-dry cutting using botanical oil coolant were conducted and MQL(Minimum Quantity Lubricant) device was used to spray coolant. Cutting forces, tool wear and surface roughness were measured in the cutting tests. Results showed that dry cutting of KP4 and hardened STD11 specimens produced better surface quality and wear performance than MQL spray cutting did.

버의 최소화를 위한 밀링 가공 파라미터의 최적화 (Optimization of Cutting Parameters for Burr Minimization)

  • 이상헌;이성환
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.130-136
    • /
    • 2001
  • Burrs formed during face milling operations are very hard to characterize because there are many parameters that affect the cutting process. Many researchers have tried to predict burr characteristics including burr size and shapes with various experimental conditions such as cutting speed, feed rate, in-plane exit angle, number of inserts, etc., but it still remains as a challenging problem for the complex combined effects between the parameters. In this paper, the Taguchi method, which is a systematic optimization application in design and analysis of experiments, is introduced to acquire optimum cutting parameters for burr minimization in face milling. Also, analysis of variance (AVOVA) is employed to study the performance characteristics in more detail. Experimental verifications are provided to show the effectiveness of this approach.

  • PDF

초경날식 절삭형 완패스정미기의 개발 (Development of One-Pass Rice Whitener with Cutting Blades of Hard Metal)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.199-209
    • /
    • 1997
  • A one-pass rice whitener with hard metal blades was developed to solve the problems of the existing one-pass rice whitener. The developed one-pass rice whitener was tested and improved through various milling experiments. It showed high performance such as the capacity of 3.5 t/h, the energy consumption of $1.0 kWh/100kg$, milled rice recovery of 91.6%, broken rice rate of 2.2%, the crack rate of 1.9% at the 750 rpm of the roller shaft, compared with those other domestic and foreign one-pass rice whiteners. Especially, it could whiten broun rice of high moisture (16~l7%) with water sprayed at low internal pressure of less than $0.2 kg/cm^2$ and low temperature due to the characteristics of the cutting part composed of 24 hard metal blades. The developed one-pass rice whitener was industrilized and distributed to some rice processing complexs in one fourth price compared with that of imported one-pass rice whiteners.

  • PDF

원심분리기를 이용한 분말시료의 TEM용 시편 준비법 연구 (An Investigation of TEM Specimen Preparation Methods from Powders Using a Centrifuge)

  • 정종만;이영부;김윤중
    • Applied Microscopy
    • /
    • 제29권1호
    • /
    • pp.67-73
    • /
    • 1999
  • 분말시료를 epoxy로 포매 (embedding)한 후 ion milling하는 방법으로 TEM 시편을 준비하는 경우에는 시료와 epoxy와의 milling정도의 차이 때문에 좋은 시편을 만들기 어렵다. 이러한 문제점을 극복하기 위해서 포매 물질에 대한 분말시료의 상대 밀도를 높여 주는 방법을 시도하였다. 일반적인 진공법보다는 원심분리기법을 이용하여 포매하는 것이 시료의 밀도를 높일 수 있었다. 또한, 비슷한 크기의 분말의 혼합보다는 서로 다른 크기의 분말을 혼합한 후 원심분리기를 이용하여 포매할 때, 큰 입자들 사이로 작은 입자들이 유입되면서 분말의 밀도가 더욱 높아지는 것을 알 수 있었다. 이렇게 준비된 시료는 ion milling정도의 차이에서 오는 문제점을 크게 줄일 수가 있어 TEM 관찰에 필요한 시편을 얻을 수 있었다. 원심분리기법은 마이크로미터 이하 크기의 구형, 판상 및 침상의 분말시료에서부터 TEM 시편을 준비하는 데에도 매우 효과적임이 드러났다.

  • PDF

티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링 (Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium)

  • 박승섭;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석 (Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy)

  • 예동희;구준영;박영군;김정석
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

Comparison of Milling and Flour Quality Characteristics of Foreign Wheat and Korean Wheat

  • Jinhee Park;Kyeong-Hoon Kim;Chon-Sik Kang;Go Eun Lee;Kyeong-Min Kim;Mina Kim;Han-yong Jeong;Yurim Kim;Jiyoung Shon;Jong-Min Ko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.296-296
    • /
    • 2022
  • This study was investigated to compare the milling and physicochemical characteristics of six Korean wheat cultivars (Keumkang, KK; Jokyung, JK; Goso, GS; Joongmo2008, JM; Baekkang, BK; Saekeumkang, SKK) and five foreign wheat classes (Australian standard white wheat, ASW; Australian hard, AH; US northern spring, NS; US hard red winter, HRW; Soft wheat, SW). Korea and foreign wheat grains were milled using a Buhler MLU-202. Flour moisture, ash, protein, gluten, sedimentation, particle size, solvent retention capacity (SRC) and dough properties of flour were analyzed. Results showed that the hard wheats had a greater total flour yield and reduction fraction yield than the soft wheats regardless of the country. However, there were in the milling characteristics between the US and Korean soft wheats. GS, a soft wheat in Korea, had the lowest flour yield (59.6%) and the highest bran fraction yield (21.4%). The particle sizes of flour by milling fraction were B1>B2>B3 for the largest, and the R1〈R2〈R3 for the smallest. Particle size, ash, protein contents and the values of lactic acid SRC showed highly correlated with flour yield. The gluten-performance-index (GPI) is the ratio of the lactic acid SRC value to the sum of sodium carbonate and sucrose SRC values, and it has been used as a quality indicator for overall performance potential of flour. GPI values differed depending on the wheat variety or class, JM (0.82) was the highest value, and SKK (0.56) and SW (0.59) were low. The curve pattern of the Mixolab result also gives a quality indication of the flour sample. JM and NS flour had similar pattern at water absorption and gluten strength parameters and BK and HRW had similar viscosity patterns. These results will enable further study for blending Korean wheat cultivar to improve the flour quality.

  • PDF

Precision of the milled full-arch framework fabricated using pre-sintered soft alloy: A pilot study

  • Woo, Hyun-Wook;Cho, Sung-Am;Lee, Cheong-Hee;Lee, Kyu-Bok;Cho, Jin-Hyun;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.128-131
    • /
    • 2018
  • PURPOSE. This study aimed to evaluate the marginal discrepancy of full-arch frameworks in implant-supported prostheses fabricated using pre-sintered soft alloy (PSA). MATERIALS AND METHODS. Full-arch metal frameworks were fabricated on the edentulous implant model using casting alloy (CA), fully-sintered hard alloy (FHA), and PSA (n = 4 in each group). To evaluate the misfit of the framework to the abutments, the absolute marginal discrepancy (AMD) values of the frameworks were measured in cross-sectional images that had been drawn as part of the triple-scan protocol. The AMD values were compared among the tested alloy groups using the Kruskal-Wallis test, with a post hoc Mann-Whitney U test (${\alpha}=.05$). RESULTS. The FHA and PSA groups showed lower marginal discrepancies than the CA group (P<.001). However, the FHA group did not differ significantly from the PSA group. CONCLUSION. Soft alloy milling is comparable to hard alloy milling, and it is more precise than casting in terms of the marginal fit of implant-supported, full-arch prostheses.