• Title/Summary/Keyword: Hangul Font Classification

Search Result 12, Processing Time 0.018 seconds

Hangul Recognition Using a Hierarchical Neural Network (계층구조 신경망을 이용한 한글 인식)

  • 최동혁;류성원;강현철;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

The Font Recognition of Printed Hangul Documents (인쇄된 한글 문서의 폰트 인식)

  • Park, Moon-Ho;Shon, Young-Woo;Kim, Seok-Tae;Namkung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2017-2024
    • /
    • 1997
  • The main focus of this paper is the recognition of printed Hangul documents in terms of typeface, character size and character slope for IICS(Intelligent Image Communication System). The fixed-size blocks extracted from documents are analyzed in frequency domain for the typeface classification. The vertical pixel counts and projection profile of bounding box are used for the character size classification and the character slope classification, respectively. The MLP with variable hidden nodes and error back-propagation algorithm is used as typeface classifier, and Mahalanobis distance is used to classify the character size and slope. The experimental results demonstrated the usefulness of proposed system with the mean rate of 95.19% in typeface classification. 97.34% in character size classification, and 89.09% in character slope classification.

  • PDF