• Title/Summary/Keyword: HangA

Search Result 2,754, Processing Time 0.025 seconds

Study on In Vitro Aggregation and Culture of Mouse Embryos by Phytohemagglutinin-P (Phytohemagglutinin-P 첨가(添加)에 따른 생쥐배(胚)의 시험관내(試驗管內) 응집(凝集)과 배양(培養)에 관하여)

  • Park, Hang Kyun;Ryou, Zae Yoong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.83-97
    • /
    • 1989
  • This study was carried out to obtain basic information necessary for aggregation and in-vitro culture of mouse embryos by treating phytohemagglutinin-p (PHA-P). The 4-, 8-cell and morula embryos were obtained from female mice of albino BALE/C, CBA and C57BL strains, those were injected 5 i.u pregenant mare serum gonadotrophin and 5 i.u human chorionic gonadotrophin to superovulation. The zona pellucidia was removed by placing the embryos in Acidic Tyrode solution containing 1.0% protease or/and 5 ug/ml PHA-P. The pairs of zona free embryos were subjected to aggregation by glassneedle in BMOC-3 containing 5 ug/ml PHA-P. The aggregation embryos were cultured in Brinster's mouse ova culture-3(BMOC-3) medium under the gas phase of 5% $CO_2$ in air $37^{\circ}C$ for 13 to 50 hours. The results obtained in this study are summarised as follows : 1. When 4-, 8-cell and morula embryos were zona-freed in acidic Tyrode solution containing 1.0% protease or/and 5 ug/ml PHA-P, and cultured in vitro to blastocysts, the 4- and 8-cell embryos showed slightly less development rates than the morula one did, and solution of 5 ug/ml PHA-P brought some higher development rate than negative control. 2. As 2, 5 or 10 ug/ml PHA-P was added to the solution to aggregate 4-, 8-cell or morula embryos, 2 ug/ml solution represented slightly lower aggregation rate than the higher levels solutions, and 4- and 8-cell embryos showed higher rates than morula one did (P<.05). 3. In respect to the development rates of aggregated embryos to morula no significant difference was found among PHA-P levels and between 4-and 8-cell embryos. With respect to those of aggregated embryos to blastocysts the different levels of PHA-P showed similar results, however, the 4- and 8-cell embryos represented higher rates than the morula one did (P<.05). 4. The mean time necessary for development of aggregated 4-, 8-cell and morula embryos to blastocysts were 38.5-40, 26-27 and 19-20hrs. Respectively in solution for aggregation. 5. The aggregation rates of embryos were 34-94%, when treated protease or/and PHA-P. Supplementation of 5 ug/ml PHA-P to the solution for aggregation showed a trend demonstrating higher aggregation rate compared to negative control, although no significance was found. However, 4- and 8-cell embryos represented significantly higher aggregation rates than the morula one did (P<.05). 6. The development rates of 4- and 8-cell embryos to morula were 52.7-84.7 and 73.8-87.2%, respectively, showing no significant difference between two cell stages. However, the aggregation rates of embryos treated with solution containing PHA-P were higher than negative control (P<.05). 7. The development rates of 4- and 8-cell and morula embryos to blastocysts were 41.7-77.7 78.7-83.0 and 0-19.2%, respectively. The rates of 4-cell embryos treated with PHA-P were significant higher than the negative control (P<.05). The 8-cell and morula embryos also showed more rates when treated PHA-P.

  • PDF

The effects of adjuvant therapy and prognostic factors in completely resected stage IIIa non-small cell lung cancer (비소세포 폐암의 근치적 절제술 후 예후 인자 분석 및 IIIa 병기에서의 보조 요법의 효과에 대한 연구)

  • Cho, Se Haeng;Chung, Kyung Young;Kim, Joo Hang;Kim, Byung Soo;Chang, Joon;Kim, Sung Kyu;Lee, Won Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.5
    • /
    • pp.709-719
    • /
    • 1996
  • Background: Surgical resection is the only way to cure non-small cell lung cancer(NSCLC) and the prognosis of NSCLC in patients who undergo a complete resection is largely influenced by the pathologic stage. After surgical resection, recurrences in distant sites is more common than local recurrences. An effective postoperative adjuvant therapy which can prevent recurrences is necessary to improve long tenn survival Although chemotherapy and radiotherapy are still the mainstay in adjuvant therapy, the benefits of such therapies are still controversial. We initiated this retrospective study to evaluate the effects of adjuvant therapies and analyze the prognostic factors for survival after curative resection. Method: From 1990 to 1995, curative resection was perfomled in 282 NSCLC patients with stage I, II, IIIa, Survival analysis of 282 patients was perfonned by Kaplan-Meier method. The prognostic factors, affecting survival of patients were analyzed by Cox regression model. Results: Squamous cell carcinoma was present in 166 patients(59%) ; adenocarcinoma in 86 pmients(30%) ; adenosquamous carcinoma in II parients(3.9%); and large cell undifferentiated carcinoma in 19 patients(7.1%). By TNM staging system, 93 patients were in stage I; 58 patients in stage II ; and 131 patients in stage rna. There were 139 postoperative recurrences which include 28 local and 111 distant failures(20.1% vs 79.9%). The five year survival rate was 50.1% in stage I ; 31.3% in stage II ; and 24.1% in stage IIIa(p <0.0001). The median survival duration was 55 months in stage I ; 27 months in stage II ; and 16 months in stage rna. Among 131 patients with stage rna, the median survival duration was 19 months for 81 patients who received postoperative adjuvant chemotherapy only or cherne-radiotherapy and 14 months for the other 50 patients who received surgery only or surgery with adjuvant radiotherapy(p=0.2982). Among 131 patients with stage IIIa, the median disease free survival duration was 16 months for 21 patients who received postop. adjuvant chemotherapy only and 4 months for 11 patients who received surgery only(p=0.0494). In 131 patients with stage IIIa, 92 cases were in N2 stage. The five year survival rate of the 92 patients with N2 was 25% and their median survival duration was 15 months. The median survival duration in patients with N2 stage was 18 months for those 62 patients who received adjuvant chemotherapy and 14 months for the other 30 patients who did not(p=0.3988). The median survival duration was 16 months for those 66 patients who received irradiation and 14 months for the other 26 patients who did not(p=0.6588). We performed multivariate analysis to identify the factors affecting prognosis after complete surgical resection, using the Cox multiple regression model. Only age(p=0.0093) and the pathologic stage(p<0.0001) were significam prognostic indicators. Conclusion: The age and pathologic stage of the NSCLC parients are the significant prognostic factors in our study. Disease free survival duration was prolonged with statistical significance in patients who received postoperative adjuvant chemotherapy but overall survival duration was not affected according to adjuvant therapy after surgical resection.

  • PDF

A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn (臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰)

  • Cho, Jae-Hun;Chae, Byung-Yoon;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF

Long-term Effect of Desferrioxamine to rHuEPO Resistant Anemia in Hemodialysis Patients (혈액 투석 환자에서 나타나는 rHuEPO 저항성 빈혈에 대한 Desferrioxamine의 장기 효과)

  • Lim, Sang-Woo;Jung, Hang-Jae;Bae, Sung-Wha;Do, Jun-Young;Yoon, Kyung-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.399-414
    • /
    • 1997
  • There are several factors concerning to anemia in chronic renal failure patients. But when rHuEPO is used, most of these factors can be overcome, and the levels of hemoglobin are increased. However, about 10% of the renal failure patients represent rHuEPO-resistant anemia eventhough high dosage of rHuEPO. For these cases, desferrioxamine can be applied to correct rHuEPO resistnacy, and many mechanism of DFO are arguing. So we are going to know whether DFO can be applied to correct anemia of the such patients, how long its effect can be continued. The seven pateients as experimental group(DFO+EPO) who represent refractoriness to rHuEPO and the other seven patients as control group(EPO) were included. Experimental group had lower than 9 g/dL of hemoglobin levels despite high rHuEPO dosage (more than 4000U/Wk) and showed normocytic normochromic anemia. There were no definitve causes of anemia such as hemorrhage or iron deficiency. Control group patients had similar characteristics in age, mean dialysis duration but showed adequate response to rHuEPO. DFO was administered to experimental group for 8 weeks along with rHuEPO(the rHuEPO individual mean dosage had been determined by mean dosage of the previous 6 months. Total mean dosage; 123.5 U/Kg/Wk). After 8 weeks of DFO administration, the hemoglobin and rHuEPO dosage levels were checked for 15 consecutive months. It should be noted that the patients determined their own rHuEPO dosage levels according to hemoglobin levels and economic status. In conrol group, rHuEPO was administered by the same method used in experimental group without DFO through the same period. Fifteen months of observation period after DFO trial were divided as Time I(7 months after DFO trial) and Time II(8 months after Time I). The results are as follows: Before DFO trial, mean hemoglobin level of experimental group was 7.8 g/dL, which is similar level(p>0.05) to control group(mean Hb; 8.2 g/dL). But in experimental group, significantly(p<0.05) higher dosages of rHuEPO(mean; 123.5 U/Kg/Wk) than control group (mean; 41.6 U/Kg/Wk) had been used. It means resistancy to rHuEPO of experimental group. But after DFO trial, the hemoglobin levels of the experimental group were increased significantly(p<0.05), and these effect were continued to Time II.(Time I; mean 8.6g/dL, Time II; mean 8.6g/dL) The effects of DFO to hemoglobin were continued for 15 months after DFO trial with similar degree through Time I, Time II. Also, rHuEPO dosages used in the experimental group were decreased to similar levels of the control group after DFO trial and these effect were also continued for 15 months(Time I; mean 48.1 U/Kg/Wk. Time II; mean 51.8 U/Kg/Wk). In the same period, hemoglobin levels and rHuEPO dosages used in the control group were not changed significantly. Notibly, hemoglobin increment and rHuEPO usage decrement in experimental group were showed maxilly in the 1st month after DFO trial. That is, after the use of DFO, erythopoiesis was enhanced with a reduced rHuEPO dosage. So we think rHuEPO reisistancy can be overcome by DFO therapy. In conclusion, the DFO can improve the anemia caused by chronic renal failure at least over 1 year, and hence, can reduce the dosage of rHuEPO for anemia correction. Additional studies in order to determine the mechanism of DFO on erythropoiesis and careful attention to potential side effects of DFO will be needed.

  • PDF