Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
Journal of Computing Science and Engineering
/
v.12
no.1
/
pp.24-35
/
2018
Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.288-295
/
1998
This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.
Journal of Korea Society of Industrial Information Systems
/
v.5
no.1
/
pp.25-30
/
2000
Hangul is regarded as one of the difficult character set due to the large number of classes and the shape similarity among different characters. Most of the conventional researches attempted to recognize the 2,350 characters which are popularly used, but this approach has a problem or low recognition performance while it provides a generality. On the contrary, recognition of a small character set appearing in specific fields like postal address or bank checks is more practical approach. This paper describes a research for recognizing the handwritten Hangul characters appearing in monetary fields. The modular neural network is adopted for the classification and three kinds of feature are tested. The experiment performed using standard Hangul database PE92 showed the correct recognition rate 91.56%.
Kim, Kwang-Hyun;Kang, Deung-Gu;Lee, Tae-Won;Park, Jin;Kim, Young-Chul
Proceedings of the IEEK Conference
/
1999.06a
/
pp.492-495
/
1999
In this paper, a research is focused on implementation of the handwritten Korean-character recognition system using a neural coprocessor for PDA application. The proposed coprocessor is composed of a digital neural network called DMNN and a RISC-based dedicated controller in order to achieve high speed as well as compactness. Two neural networks are used for recognition, one for stroke classification out of extended 11 strokes and the other for grapheme classification. Our experimental result shows that the successful recognition rate of 92.1% over 3,000 characters written by 10 persons can be obtained. Moreover, it can be improved to 95.3% when four candidates are considered. The design verification of tile proposed neural coprocessor is conducted using the ASIC emulator for further hardware implementation.
Journal of the Korean Institute of Telematics and Electronics B
/
v.30B
no.4
/
pp.1-10
/
1993
In this paper, a new method of phoneme segmentation of handwritten Korean characters using the local graph pattern is proposed. At first, thinning was performed before extracting features. End-point, inflexion-point, branch-point and cross-point were extracted as features. Using these features and the angular relations between these features, local graph pattern was made. When local graph pattern is made, the of strokes is investigated on contacting point. From this process, pattern is simplified as contacting pattern of the basic form and the contacting form we must take into account can be restricted within fixed region, 4therefore phoneme segmentation not influenced by characters form and any other contact in a single character is performed as matching this local graph pattern with base patterns searched ahead. This experiments with 540 characters have been conducted. From the result of this experiment, it is shown that phoneme segmentation is independent of characters form and other contact in a single character to obtain a correct segmentation rate of 95%, manages it efficiently to reduce the time spent in lock operation when the lock.
The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.5
/
pp.883-891
/
1994
In this paper, we introduce new thinning algorithm which is useful for handwritten Korean character by using pixel directivity. At first, the directivity detection is performed before thinning. Each pixel is classified into the straight line of the oblique line based on its directivity. The algorithm using Rutovitz corossing number is applied to the straight line. And the algorithm using Hilditch crossing number is applied to the oblique line. The proposed algorithm is compared with six convention algorithms. Comparison criteria are similarity, noisy branch, and phoneme segmentation rate. Experiments with 570 characters have been conducted. Experimental result shows that the proposed algorithm is superior to six conventional algorithm with respect to similarity and phoneme segmentation rate.
Journal of The Korean Association of Information Education
/
v.1
no.1
/
pp.28-37
/
1997
This paper presents a new neural network based on fuzzy set and its application to invariant character recognition. The fuzzy neural network consists of five layers. The results of simulation show that the network can recognize characters in the case of distortion, translation, rotation and different sizes of handwritten characters and even with noise(8${\sim}$30%)). Translation, distortion, different sizes and noise are achieved by layer L2 and rotation invariant by layer L5. The network can recognize 108 examples of training with 100% recognition rate when they are shifted in eight directions by 1 pixel and 2 pixels. Also, the network can recognize all the distorted characters with 100% recognition rate. The simulations show that the test patterns cover a ${\pm}20^{\circ}$ range of rotation correctly. The proposed network can also recall correctly all the learned characters with 100% recognition rate. The proposed network is simple and its learning and recall speeds are very fast. This network also works for the segmentation and recognition of handwritten characters.
Journal of the Korean Institute of Telematics and Electronics B
/
v.30B
no.3
/
pp.50-59
/
1993
There is basic problem with the current evaluation method for character recognition systems. The current method evaluates the average recognition rate by applying the test data to the target system. The average recognition rate tells no more than and no less than the overall performance and it depends on the data. In this paper we propose a testing method which will analyze the target system and point out its strong points and weak points. This can be made possible through using the data which are generated cy distorting the standard character images according to a carefully controlled manner. This paper will describe how to automatically generate such distorted images. Also we will show the method is actually effective and useful by applying it to evaluating existing recognition algorithms.
This paper proposes a technique for recognizing online handwritten cursive data obtained by tracing a motion trajectory while a user is in the 3D space based on a convolution neural network (CNN) algorithm. There is a difficulty in recognizing the virtual character input by the user in the 3D space because it includes both the character stroke and the movement stroke. In this paper, we divide syllable into consonant and vowel units by using labeling technique in addition to the result of localizing letter stroke and movement stroke in the previous study. The coordinate information of the separated consonants and vowels are converted into image data, and Korean handwriting recognition was performed using a convolutional neural network. After learning the neural network using 1,680 syllables written by five hand writers, the accuracy is calculated by using the new hand writers who did not participate in the writing of training data. The accuracy of phoneme-based recognition is 98.9% based on convolutional neural network. The proposed method has the advantage of drastically reducing learning data compared to syllable-based learning.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.7
/
pp.27-35
/
1999
Researches on the recognition of handwritten script have been conducted under the assumption that the isolated recognition units are provided as inputs. However, in practical recognition system designs, providing the isolated recognition unit is an challenge due to various writing syles. This paper proposes an approach for segmenting words from lines of unconstrained handwritten text, without help of recognition. In contrast to the conventional approaches which are based on physical gaps between connected components, clues that reflect the author's writing style, in terms of spacing, are extracted and utilized for the segmentation using a simple neural network. The clues are from character segments and include normalized heights and intervals of the segments. Effectiveness of the proposed approach compared with the conventional connected component based approaches in terms of word segmentation performance was evaluated by experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.