• Title/Summary/Keyword: Handover Authentication

Search Result 67, Processing Time 0.026 seconds

Proposal of a mobility management scheme for sensor nodes in IoT(Internet of Things) (사물인터넷(IoT)환경에서 센서 노드들의 이동성 관리 방안에 관한 제안)

  • Park, Seung-Kyun
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.59-64
    • /
    • 2016
  • 6LoWPAN (IPv6 over Low Power Wireless Sensor Network) standardized by IETF does not support the mobility of wireless sensor nodes. Since the wireless sensor node, subject to a lot of constraints in the CPU, memory, a battery is not easy to apply to existing protocols such as Mobile IPv6. In this paper, we propose a novel mobility management architecture and methods to work with 6LoWPAN based on the analysis on FPMIPv6 (Fast PMIPv6) the host is not a handover procedure performed in order to support the mobility of such sensor nodes. It was suggested the use of a dispatch code pattern that is not currently used in 6LoWPAN for inter-working, MAG and MAC, MAC in order to reduce packet loss caused as the authentication delay in the handover process to minimize the power consumption of a sensor node that is caused by the re-transmission the new concept of temporary guarantee (temporary guarantee) and trust relationships (trust relationship) between AAA and introduced.

An Approach for Improving Mobile WiMAX Security - ROSMEX Architecture (안전한 모바일 와이맥스 네트워크를 위한 보안 구조 연구)

  • Shon, Tae-Shik;Koo, Bon-Hyun;Choi, Hyo-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • The IEEE 802.16-2004 standard has a security sub-layer in the MAC layer called, Privacy Key Management (PKM). However, several researches have been published to address the security vulnerabilities of IEEE 802.16-2004. After the IEEE 802.16-2004 standard, a new advanced and revised standard was released as the IEEE 802.16e-2005 amendment which is foundation of Mobile WiMAX network supporting handoffs and roaming capabilities. PKMv2 in Mobile WiMAX includes EAP authentication, AES-based authenticated encryption, and CMAC or HMAC message protection. However, Mobile WiMAX still has a problem of security architecture such as a disclosure of security context in network entry, a lack of secure communication in network domain, and a necessity of efficient handover supporting mutual authentication because Mobile WiMAX security has mainly concentrated on between SS and BS communication. Based on the investigation results, we propose a novel mobile WiMAX security architecture, called RObust and Secure MobilE WiMAX (ROSMEX), to prevent the new security vulnerabilities.

A Study of Mobility support Analysis on Heterogeneous Wireless Network (이종 무선망간 이동성 제공 분석에 관한 연구)

  • Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.577-580
    • /
    • 2012
  • Communication environment has rapidly evolved into All-IP based core network, which is centered on a variety of access network, and develops into ubiquitous environment for each user due to the development of multiple interface terminals and the spread of contents usage. Especially, mobile streaming technologies and integrated authentication technologies are needed for mobile users to provide seamless mobility. The technology for seamless mobility services is an important issue. In this paper, the IEEE 802.21 MIH information server is based on the network offering handover technology between heterogeneous network.

  • PDF

Analysis of Mobility and Security Requirements for Mobile IPTV (모바일 IPTV의 이동성에 대한 침해 분석 및 대응방안)

  • Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • The mobility is one of the most important factor for mobile IPTV. However, mobility is highly vulnerable to eavesdropping and unauthorized access. Generally mobility of mobile services is based on handover techniques. But we showed that mobile IPTV must use other techniques to confirm mobility. In this paper, we analyzed security of wibro mobile IPTV from the viewpoint of mobility. We considered DCAS host must include new addresses of mobile devices. We analyzed total number of authentication for the proposed method. So we showed that proposed method was more efficient than wibro-mobile IPTV. We compared the security of our proposal to the security requirements of TTA.

Measuring and Analyzing WiMAX Security adopt to Wireless Environment of U-Healthcare (유헬스케어의 무선환경에 적합한 WiMAX 보안 측정 및 분석)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • Wireless access network section needs strong security which supports high data rate and mobility not to invade patient's privacy by exposing patient's sensitive biometric from automatic implantable device that is adapted to u-healthcare service. This paper builds test bed and performs assessment and measurement of security ability of WiMAX network to transmit and receive mobile patient's biometric by building WiMAX network in wireless access network not to expose paitne's biometirc at wireless access network section to the third person. Specially, this paper compares and assesses data security, MAC control message security, handover conection delay, and frame loss and bandwidth of ECDH at the layer of WiMAX security compliance, WiMAX MAC IPSec, and MAC.

Model and Architecture of User-Defined Networks for Seamless Mobility Management in Diverse Wireless Environment (다양한 무선 환경에서 끊김 없는 이동성 관리를 위한 사용자 정의 네트워크 모델 및 구조)

  • Chun, Seung-Man;Nah, Jae-Wook;Lee, Seung-Mu;Choi, Jun-Hyuk;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper, we propose a novel architecture for seamless mobility management to provide users with seamless Internet connection when users roam between diverse wireless local area networks (WLANS) controlled by different management entities. There have been many researches in IETF, i.e., MIPv6, HMIPv6, and PMIPv6, to provide the mobility management. However, practically since wireless access points or access routers, which are managed by an individual manager or ISP managers, have different authentication scheme and the supported mobility management, the previous mobility management protocol developed by IETF can not guarantee the quality of service of application services as the mobile node performs the handover. To solve this drawback, we propose the mobility management scheme to provide QoS-guaranteed Internet services during the handover by configurating the wireless networks which is defined by users. More specifically, we present a model, the architecture and an algorithm for user-defined network (UDN) to provide the seamless Internet service. Finally, the performance of the proposed algorithm is evaluated by the network simulation tool.

A Secure and Efficient Roaming Mechanism for Centralized WLAN Environment (중앙집중식 WLAN 환경에서의 안전하고 효율적인 로밍 메커니즘)

  • Park, Chang-Seop;Woo, Byung-Duk;Lim, Jeong-Mi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.81-92
    • /
    • 2009
  • Recently, there is a drastic increase in users interested in real-time multimedia services in the WLAN environment, as the demand of IEEE 802.11 WLAN-based services increases. However, the handoff delay based on 802.11i security policy is not acceptable for the seamless real-time multimedia services provided to MS frequently moving in the WLAN environment, and there is a possibility of DoS attacks against session key derivation process and handoff mechanism. In this paper, a secure and efficient handoff mechanism in the centralized WLAN environment is introduced to solve the security problems. The 4-way Handshake for both mutual authentication and session key derivation is replaced by the 2-way Reassociation process.