• 제목/요약/키워드: Hand temperature

검색결과 2,290건 처리시간 0.044초

온도변화에 따른 $SF_{6}/N_{2}$ 혼합가스의 절연특성 (Breakdown Characteristics of $SF_{6}/N_{2}$ Gas Mixtures According to a change in Temperature)

  • 이복희;이봉;최종혁;백영환;정동철;김성원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1455-1456
    • /
    • 2007
  • This paper presents the experimental results on impulse breakdown characteristics under a highly non-uniform electric field in $SF_{6}/N_{2}$ gas mixtures according to a change in temperature. Test temperature ranges from $-25^{\circ}C$ to $25^{\circ}C$. The impulse predischarge breakdown developments are investigated by the measurements of current pulse and discharge luminous events. As a result, the predischarge development mechanisms for both positive and negative polarities are same. When increasing the temperature, breakdown voltage due to lightning impulse voltage is increased in negative polarity. On the other hand, when increasing the temperature, breakdown voltage due to lightning impulse voltage is not changed in positive polarity.

  • PDF

Effect of Coiling Temperature on the Annealed Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Yinghua;Park, Young-Koo;Lee, Oh-Yeon
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.65-68
    • /
    • 2008
  • The present work was performed to investigate the effect of coiling temperature on the annealed texture in Cu/Nb-added ultra-low-carbon steels. The ultra-low-carbon steels were coiled at 650 and $720^{\circ}C$, respectively. The result showed that the Cu-added ultra-low-carbon steel at a low coiling temperature produced a desirable annealed texture related to good formability. On the other hand, Nb-added ultra-low-carbon steel at a high coiling temperature also produced a desirable texture. This is attributed to the effect of Nb, which retards recrystallization during the coiling process.

전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구 (Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads)

  • 김도형;김범주;이정현;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

성상신경절 차단시 부착형 피부온도계의 사용 경험 (The Use of Sticker Type Temperature Indicator in Stellate Ganglion Block)

  • 윤덕미;오흥근;케이지 이시자키;후지타 타츠시
    • The Korean Journal of Pain
    • /
    • 제7권1호
    • /
    • pp.49-52
    • /
    • 1994
  • Measurement of skin temperature is most frequently used to evaluate effect of sympathetic block. Sticker type skin temperature indicator, $ProChecker^{(R)}$, uses metamocolor, which changes the darkness of the color by giving and taking of electrons in response to temperature. We examined the accuracy of this skin temperature indicator in pain clinic patients who were treated with stellate ganglion block. Ten minutes before, and 10~20 minutes after stellate ganglion block, skin temperature on both dorsum of hand were measured using both $ProChecker^{(R)}$ and thermography concurrently. The results showed that skin temperature measured by $ProChecker^{(R)}$ was feasible, in correlation to thermography. Sticker type temperature indicator ($ProChecker^{(R)}$) is concluded as a useful monitor of skin temperature during nerve block in outpatient clinics.

  • PDF

분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발 (Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer)

  • 김성준;최재영;문형필;최혁렬;구자춘
    • 로봇학회논문지
    • /
    • 제11권2호
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.

어깨 및 팔 동작 부하 측정을 위한 관찰적 기법 비교 (Comparison of Six Observational Methods for Assessing Arm- and Hand-intensive Tasks)

  • 기도형
    • 대한안전경영과학회지
    • /
    • 제26권2호
    • /
    • pp.87-92
    • /
    • 2024
  • This study aims to compare six observational methods for assessing arm- and hand-intensive tasks, based on literature review. The comparison was conducted in viewpoints of body regions, force/external load, motion repetition, other factors including static posture, coupling, duration/break, pace, temperature, precision task, and final risk or exposure level. The number of risk factors assessed was more, and assessment procedure was more complex than the observational methods for assessing whole-body postural loads such as Ovako Working Posture Analysis System(OWAS), Rapid Upper Limb Assessment(RULA), and Rapid Entire Body Assessment(REBA). Due to these, the intra- and inter-reliabilities were not high. A past study showed that while Hand Arm Risk Assessment Method(HARM) identified the smallest proportion of the work tasks as high risk, Strain Index(SI) and Quick Exposure Check(QEC) hand/wrist were the most rigorous with classifying most work tasks as high risk. This study showed that depending on the observational technique compared, the evaluation factors, risk or exposure level, and evaluation results were different, making it necessary to select a technique appropriate for the characteristics of the work being assessed.

현삼 및 섬현삼 종자의 저장조건에 따른 발아특성 연구 (Effect of Storage Condition on the Germination of Scrophularia buergeriana and Scrophularia takesimensis)

  • 이정훈;안찬훈;이윤지;김성철;정찬식;김성민
    • 한국약용작물학회지
    • /
    • 제24권5호
    • /
    • pp.393-400
    • /
    • 2016
  • Background: This study was conducted to investigate the effects of germination temperature, storage container and storage temperature on Scrophularia buergeriana and Scrophularia takesimensis seeds. Methods and Results: Seed lengths of both species were 0.8 mm, while seed width differed, with S. buergeriana measuring 0.5 mm and S. takesimensis measuring 0.4 mm. The seeds of S. buergeriana were packaged in paper containers under room temperature ($15^{\circ}C$), cold temperature ($4^{\circ}C$), and freeze temperature ($-20^{\circ}C$). These seeds exhibited around 80% germination rate at temperatures between $15^{\circ}C$ and $30^{\circ}C$. The germiantion rate of S. takesimensis, on the other hand, differed significantly at different germination temperatures. Seeds of S. takesimensis which were packaged in vinyl and paper containers and stored under room and cold temperatures, exhibited around 80% germination rate at $15^{\circ}C$. However, the germination rate of freeze-stored seeds were decreased to lower than 20% at germination temperatures of $15^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$ germiantion conditions. The rate of germination showed a low positive to a significantly negativie correlation with the other factor that were determined to evaluate the germination performance. Conclusions: This study elucidates the most suitable germination and storage conditions to increase the germination rate for the two species of Scrophularia buergeriana and Scrophularia takesimensis needs to be stored in paper containers under cold temperature and requires a temperature of $20^{\circ}C$ for germination. On the other hand, S. takesimensis in vinyl containers need to be stored at room temperature and those in paper containers at cold temperature, and a temperature of $15^{\circ}C$ is required for germination.

예측모델에 따른 태양광발전시스템의 하절기 모듈온도 예측 및 정확도 분석 (Prediction and Accuracy Analysis of Photovoltaic Module Temperature based on Predictive Models in Summer)

  • 이예지;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.25-38
    • /
    • 2017
  • Climate change and environmental pollution are becoming serious due to the use of fossil energy. For this reason, renewable energy systems are increasing, especially photovoltaic systems being more popular. The photovoltaic system has characteristics that are affected by ambient weather conditions such as insolation, outside temperature, wind speed. Particularly, it has been confirmed that the performance of the photovoltaic system decreases as the module temperature increases. In order to grasp the influence of the module temperature in advance, several researchers have proposed the prediction models on the module temperature. In this paper, we predicted the module temperature using the aforementioned prediction model on the basis of the weather conditions in Incheon, South Korea during July and August. The influence of weather conditions (i.e. insolation, outside temperature, and wind speed) on the accuracy of the prediction models was also evaluated using the standard statistical metrics such as RMSE, MAD, and MAPE. The results show that the prediction accuracy is reduced by 3.9 times and 1.9 times as the insolation and outside temperature increased respectively. On the other hand, the accuracy increased by 6.3 times as the wind speed increased.

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구 (A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration)

  • 이승민;노형남;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF