• Title/Summary/Keyword: Hand segmentation

Search Result 119, Processing Time 0.024 seconds

Emergency Signal Detection based on Arm Gesture by Motion Vector Tracking in Face Area

  • Fayyaz, Rabia;Park, Dae Jun;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents a method for detection of an emergency signal expressed by arm gestures based on motion segmentation and face area detection in the surveillance system. The important indicators of emergency can be arm gestures and voice. We define an emergency signal as the 'Help Me' arm gestures in a rectangle around the face. The 'Help Me' arm gestures are detected by tracking changes in the direction of the horizontal motion vectors of left and right arms. The experimental results show that the proposed method successfully detects 'Help Me' emergency signal for a single person and distinguishes it from other similar arm gestures such as hand waving for 'Bye' and stretching. The proposed method can be used effectively in situations where people can't speak, and there is a language or voice disability.

Sorting for Plastic Bottles Recycling using Machine Vision Methods

  • SanaSadat Mirahsani;Sasan Ghasemipour;AmirAbbas Motamedi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.89-98
    • /
    • 2024
  • Due to the increase in population and consequently the increase in the production of plastic waste, recovery of this part of the waste is an undeniable necessity. On the other hand, the recycling of plastic waste, if it is placed in a systematic process and controlled, can be effective in creating jobs and maintaining environmental health. Waste collection in many large cities has become a major problem due to lack of proper planning with increasing waste from population accumulation and changing consumption patterns. Today, waste management is no longer limited to waste collection, but waste collection is one of the important areas of its management, i.e. training, segregation, collection, recycling and processing. In this study, a systematic method based on machine vision for sorting plastic bottles in different colors for recycling purposes will be proposed. In this method, image classification and segmentation techniques were presented to improve the performance of plastic bottle classification. Evaluation of the proposed method and comparison with previous works showed the proper performance of this method.

인위적 데이터를 이용한 군집분석 프로그램간의 비교에 대한 연구

  • 김성호;백승익
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2001
  • Over the years, cluster analysis has become a popular tool for marketing and segmentation researchers. There are various methods for cluster analysis. Among them, K-means partitioning cluster analysis is the most popular segmentation method. However, because the cluster analysis is very sensitive to the initial configurations of the data set at hand, it becomes an important issue to select an appropriate starting configuration that is comparable with the clustering of the whole data so as to improve the reliability of the clustering results. Many programs for K-mean cluster analysis employ various methods to choose the initial seeds and compute the centroids of clusters. In this paper, we suggest a methodology to evaluate various clustering programs. Furthermore, to explore the usability of the methodology, we evaluate four clustering programs by using the methodology.

  • PDF

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.

Sentence design for speech recognition database

  • Zu Yiqing
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.472-472
    • /
    • 1996
  • The material of database for speech recognition should include phonetic phenomena as much as possible. At the same time, such material should be phonetically compact with low redundancy[1, 2]. The phonetic phenomena in continuous speech is the key problem in speech recognition. This paper describes the processing of a set of sentences collected from the database of 1993 and 1994 "People's Daily"(Chinese newspaper) which consist of news, politics, economics, arts, sports etc.. In those sentences, both phonetic phenometla and sentence patterns are included. In continuous speech, phonemes always appear in the form of allophones which result in the co-articulary effects. The task of designing a speech database should be concerned with both intra-syllabic and inter-syllabic allophone structures. In our experiments, there are 404 syllables, 415 inter-syllabic diphones, 3050 merged inter-syllabic triphones and 2161 merged final-initial structures in read speech. Statistics on the database from "People's Daily" gives and evaluation to all of the possible phonetic structures. In this sentence set, we first consider the phonetic balances among syllables, inter-syllabic diphones, inter-syllabic triphones and semi-syllables with their junctures. The syllabic balances ensure the intra-syllabic phenomena such as phonemes, initial/final and consonant/vowel. the rest describes the inter-syllabic jucture. The 1560 sentences consist of 96% syllables without tones(the absent syllables are only used in spoken language), 100% inter-syllabic diphones, 67% inter-syllabic triphones(87% of which appears in Peoples' Daily). There are rougWy 17 kinds of sentence patterns which appear in our sentence set. By taking the transitions between syllables into account, the Chinese speech recognition systems have gotten significantly high recognition rates[3, 4]. The following figure shows the process of collecting sentences. [people's Daily Database] -> [segmentation of sentences] -> [segmentation of word group] -> [translate the text in to Pin Yin] -> [statistic phonetic phenomena & select useful paragraph] -> [modify the selected sentences by hand] -> [phonetic compact sentence set]

  • PDF

Lifestyle Segmentation: The Comparison of Islamic and Conventional Banking Customers in Indonesia

  • Sutarso, Yudi;Rustiana, Elly;Hanum, Rizky Amalia;Gunawan, Wibiksono K
    • Journal of Distribution Science
    • /
    • v.10 no.8
    • /
    • pp.25-34
    • /
    • 2012
  • Understanding customer' lifestyles important for banks because it will guide in determining marketing policies, such as services, pricing, service delivery and promotion decisions. From the customer' lifestyle, banks will know what kind of customers' attitudes, interests and opinions, so they also will understand what the costumer' needs and what services needed by them. For Islamic banks, customers understanding are important because, nowadays, the competition of the banks is not only with other Islamic banks but also with the well-established conventional banks offering Islamic products or services The aims of this research paper are to describe what factors underline the customer's lifestyle of both Islamic and conventional bank, to segment the bank customers based on their lifestyles and investigate the profile of each segments, to compare the characteristics of the segments, and to identify marketing policies based on the characteristics. The population of the study is banking customers in Indonesia, in which the researchers have used judgment sampling as sample selection. There were 186 customers of Islamic banks and 244 customers of conventional bank as respondents in this study. Statistical methods employed were exploratory factor analysis and cluster analysis. The finding of the study shows that there are twelve factor underlining the customers' lifestyle, namely: factor of fashion conscious, internet usage, sports spectator, financial and technology optimism, price sensitivity, independent, compulsive housekeeper, new brand tryer community activities, opinion leader, credit usage, and homebody. In addition, for Islamic banking, there are two market segments, namely fashionable-independent and innovative-social segment. Based on the lifestyle characteristics, the first segment has higher level in factor of fashion conscious, homebody, independent, optimism and price conscious, which is therefore called fashionable-independent segment. On the other hand, the second cluster has higher level in factor of new brand tryer, community minded, sport spectator, credit user, internet usage, opinion leader, and compulsive housekeeper, which is therefore called the innovative-social segment. Furthermore, for conventional banking, there are also two segments, namely persuasive-optimistic and sensitive-independent segment. The first segment has higher level on some factors, namely: opinion leader, optimism, internet usage rate, credit usage level, sport spectator, and new brand tryer. On the other hand, the second cluster is characterized by higher level in factor of price conscious, confidence, community minded, homebody, fashion conscious, and compulsive housekeeper. Managerial implications for the management of Islamic banks could be identified in this study as follows. Firstly, the twelve lifestyle factors of this study could be an alternative view in observe Islamic banking customers. The domination of both the fashionable conscious and the internet usage factor show that the aspects are quite instrumental in perceiving the customer' lifestyles, in which reflects the importance of these two aspects to customers. Secondly, in serving their customers, Islamic banks need to understand the customer lifestyle, in which the lifestyle segments found in this study provide a guide of how their needs were reflected. Finally, by understanding the segments and the characteristics each segment of the conventional banks, Islamic banks could adjust their marketing strategies differently from the conventional banks.

  • PDF

Sign Language Dataset Built from S. Korean Government Briefing on COVID-19 (대한민국 정부의 코로나 19 브리핑을 기반으로 구축된 수어 데이터셋 연구)

  • Sim, Hohyun;Sung, Horyeol;Lee, Seungjae;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.325-330
    • /
    • 2022
  • This paper conducts the collection and experiment of datasets for deep learning research on sign language such as sign language recognition, sign language translation, and sign language segmentation for Korean sign language. There exist difficulties for deep learning research of sign language. First, it is difficult to recognize sign languages since they contain multiple modalities including hand movements, hand directions, and facial expressions. Second, it is the absence of training data to conduct deep learning research. Currently, KETI dataset is the only known dataset for Korean sign language for deep learning. Sign language datasets for deep learning research are classified into two categories: Isolated sign language and Continuous sign language. Although several foreign sign language datasets have been collected over time. they are also insufficient for deep learning research of sign language. Therefore, we attempted to collect a large-scale Korean sign language dataset and evaluate it using a baseline model named TSPNet which has the performance of SOTA in the field of sign language translation. The collected dataset consists of a total of 11,402 image and text. Our experimental result with the baseline model using the dataset shows BLEU-4 score 3.63, which would be used as a basic performance of a baseline model for Korean sign language dataset. We hope that our experience of collecting Korean sign language dataset helps facilitate further research directions on Korean sign language.

Moving Object Tracking Using Active Contour Model (동적 윤곽 모델을 이용한 이동 물체 추적)

  • Han, Kyu-Bum;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

Global Market Segmentation Strategy: A Comparison of Evaluation toward womens formal wear and casual wear among Korean and American consumers in 20s (한.미 20대 소비자의 여성 정장과 캐주얼시장 세분화를 위한 글로벌 마케팅 전략)

  • Lee, Seung-Hee;Lim, Sook-ja;Ahn, Cheun-soon;Yang, Yoon;Lennon, Sharron
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.4
    • /
    • pp.807-816
    • /
    • 2001
  • The purpose of this research was to compare American Korean consumers perceptions or evaluations of womens formal wear and casual wear. Results revealed that two groups classified differently the products in formal wear, not casual wear. In general, compared to Korean subjects, Americans rated the Korean business formal wear as more fashionable, attractive, stylish and of having higher quality than U.S. formal wear, indicating they were more likely to purchase. On the other hand, compared to U.S. subjects, in general, Koreans rated higher the U.S. casual wear as more liking, purchasing, comfortable, and appealing than Korean casual wear. Regarding clothing image toward each picture, there was a statically difference in both groups. To increase American or Korean exports of apparels, companies must look globally to develop new markets for their products.

  • PDF

The Postprocessor of Automatic Segmentation for Synthesis Unit Generation (합성단위 자동생성을 위한 자동 음소 분할기 후처리에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.50-56
    • /
    • 1998
  • 본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.

  • PDF