• Title/Summary/Keyword: Hand Stability

Search Result 838, Processing Time 0.037 seconds

Studies on the Reinforcement Treatment of Aged Hanji Using Cellulose Derivative Solutions (셀룰로오스 유도체 용액을 이용한 열화 한지의 강도보강 처리에 관한 연구)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.40-48
    • /
    • 2011
  • To build up the conservativeness of aged paper heritages, the strength reinforcement treatment using various cellulose derivative solutions was considered. Hand-made Hanji prepared by traditional papermaking technique was firstly simulated in order to modify the overall of paper properties like aged paper heritages by accelerated ageing treatment at $150^{\circ}C$ for 24 hours, and then the ageing stability of Hanji was verified through the secondary accelerated ageing at $150^{\circ}C$ for 12 hours. The physical properties of aged Hanji were improved by applying with cellulose derivative solutions. The ageing stability for physical, optical (L, brightness, opacity, yellowness) and chemical (oxidation index, degree of polymerization) properties of aged Hanji treated with all kinds of cellulose derivative solutions was also good compared to those of untreated samples, especially using MC solution. Therefore, it was that a kind of MC solution would be well-suited for the strength reinforcement treatment of aged paper heritages.

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Immobilization of Hansenula polymorpha Alcohol Oxidase for Alcohol Biosensor Applications

  • Chung, Hyun-Jung;Cho, Hyun-Young;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.57-60
    • /
    • 2009
  • Alcohol oxidase catalyzes the oxidation of short lines alcohol to aldehyde. In this study, alcohol oxidase from Hansenula polymorpha (HpAOD) was induced by addition of 0.5% methanol as the carbon source and purified to electrophoretic homogeneity by column chromatographies. The purified HpAOD was immobilized with DEAE-cellulose particles and its biochemical properties were compared with those of free enzyme. The substrate specificity and the optimum pH of immobilized enzyme were similar to those of free enzyme. On the other hand, the Km values of free and immobilized enzymes for ethanol were 6.66 and 14.65 mM, respectively. The optimum temperature for free enzyme was ${50^{\circ}C}$, whereas that for immobilized enzyme was ${65^{\circ}C}$. Immobilized enzyme showed high stability against long storage. Immobilized enzyme was also tested for the enzymatic determination of ethanol by the colorimetric method. We detected 1 mg/liter ethanol ($1{\times}10^{-4}$% ethanol) by 2,6- dichloroindophenol system. Therefore, the present study demonstrated that immobilized HpAOD has high substrate specificity toward ethanol and storage stability, which may be of considerable interest for alcohol biosensor and industrial application.

Chemical Structural Effects of Polyimides on the Alignment and Electro-optical Properties of Liquid Crystal Cells

  • Paek, Sang-Hyon;Wonseok Dong
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2004
  • The nature of the nematic liquid crystal (LC) alignment induced by the rubbed polyimide (PI) alignment layers (ALs) and the electro-optical (EO) properties of the LC cells are expected to depend on the chemical and physical features of the PI. By employing five pyromellitic dianhydride (PMDA)-type PIs having different functionalities, we have studied the effects of the PI's structure and chemistry on the alignment characteristics and the cell's EO properties. Increasing the flexibility of the PI increases the pretilt angle and tends to improve the alignment stability. On the other hand, the rigid, fluorinated PI displays poor stability for LCs and induces a less stable/uniform LC alignment and, subsequently, a small pre tilt angle. It also transpired that fluorination of the PI deteriorated the voltage-transmittance characteristics and the voltage holding ratio; increasing the flexibility of the PI structure improves these EO properties. The finding that the qualitative trends for the PI's functionalities are similar for both the alignment and EO properties suggests that the EO properties are closely related to the alignment characteristics, which are determined by short-range interactions between LC and PI molecules.

Transient State Analysis of Network Connected to Wind Generation System (풍력발전시스템이 연계된 계통의 과도상태해석)

  • Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • Generator for wind power can be either synchronous or asynchronous (induction) types. Induction and synchronous generators behave in a different way when subjected to severe faults. Induction generators does not have an angle stability limit and short circuit in the neighborhood of an Induction generator causes the demagnetization of the machine when the fault is cleared, the voltage raises slowly, while the grid contributes with reactive power to the generator and the magnetic flux recovers. On the other hand in the synchronous generators the recovery of the voltage is immediate, since the excitation of the rotor angle comes from an independent circuit. This paper shows the result of the transient state analysis in the network connected to wind generation system Several case studies have been conducted to determine the effect of the clearing time of a fault on the network stability. It has been found that the critical clearing time can be as low as 61ms in the case of induction generator compared to 370ms in the case of synchronous generator.

Quantitative risk assessment for wellbore stability analysis using different failure criteria

  • Noohnejad, Alireza;Ahangari, Kaveh;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.281-293
    • /
    • 2021
  • Uncertainties in geomechanical input parameters which mainly related to inappropriate data acquisition and estimation due to lack of sufficient calibration information, have led wellbore instability not yet to be fully understood or addressed. This paper demonstrates a workflow of employing Quantitative Risk Assessment technique, considering these uncertainties in terms of rock properties, pore pressure and in-situ stresses to makes it possible to survey not just the likelihood of accomplishing a desired level of wellbore stability at a specific mud pressure, but also the influence of the uncertainty in each input parameter on the wellbore stability. This probabilistic methodology in conjunction with Monte Carlo numerical modeling techniques was applied to a case study of a well. The response surfaces analysis provides a measure of the effects of uncertainties in each input parameter on the predicted mud pressure from three widely used failure criteria, thereby provides a key measurement for data acquisition in the future wells to reduce the uncertainty. The results pointed out that the mud pressure is tremendously sensitive to UCS and SHmax which emphasize the significance of reliable determinations of these two parameters for safe drilling. On the other hand, the predicted safe mud window from Mogi-Coulomb is the widest while the Hoek-Brown is the narrowest and comparing the anticipated collapse failures from the failure criteria and breakouts observations from caliper data, indicates that Hoek-Brown overestimate the minimum mud weight to avoid breakouts while Mogi-Coulomb criterion give better forecast according to real observations.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Effect of Homogenization on Suspension Stability of Makgeolli (균질 처리가 막걸리 고형분의 현탁 안정성에 미치는 영향)

  • Shin, J.Y.;Kang, C.S.;Choi, H.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.33-41
    • /
    • 2021
  • The effect of homogenization treatment on the suspension stability of makgeolli was evaluated. The non-soluble solids of makgeolli that were not homogenized were precipitated at 1.0-68 mm after 10 minutes of standing and 2.0-70.5 mm after 30 minutes of standing. On the other hand, in the makgeolli homogenized with a blender for more than 20 seconds, no precipitated non-soluble solids were observed during the initial 10 minutes, and when it was left still for 30 minutes, it showed precipitation of 2.0 mm (control 58.0 mm). The makgeolli treated with a high-pressure homogenizer did not show any sedimentation until 30 minutes of standing. In the sensory evaluation, the high-pressure homogenized makgeolli had a score of 3.93, whereas non-treated had a score of 2.80, which was improved by 40% by homogenization.

A field Application of Non-shrinkage High Strength Concrete Using CSA Expansive Additive (CSA 팽창재를 사용한 무수축 고강도 콘크리트 현장적용)

  • 조일호;양재성;김진희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.77-80
    • /
    • 1999
  • Before the field applications, several basic laboratory test were the characteristics of workability and strength of the concrete containing CSA expansive additive. As a result, high strength concrete using CSA expansive additive show similar workability and compressive to that of plain concrete, the optimum replacement ratio of them to plain concrete were obtained for CSA expansive additive 10%. On the other hand, it can be concluded that the use of CSA component is effective to prevent shrinkage crack reducing concrete using superplasticizer and to achive volume stability of concrete structure.

  • PDF