• 제목/요약/키워드: Hand Shape Recognition

검색결과 92건 처리시간 0.024초

HMM을 이용한 수기숫자 인식에 관한 연구 (A Study on the Hand-written Number Recognition by HMM(Hidden Markov Model))

  • 조민환
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.121-125
    • /
    • 2004
  • 대부분의 수기 숫자 인식 시스템에서는 자모 형태를 이용한 특징 점 추출과, 형태소 적 분석기법을 많이 사용하였다. 본 연구에서는 체인코드를 사용하고, 생성된 체인코드를 미분하여 최소 값이 되는 미분코드를 만들었다. 이 미분코드는 대부분의 수기 숫자에 적용해 본 결과 숫자 변별력이 매우 뛰어남을 알 수 있었다. 처리 순서는 몇 개의 수기숫자를 전 처리하고, 체인코드와 미분코드를 생성 한 후, HMM 인식 네트워크를 사용하여 숫자 인식하였다. 처리 결과 96.1%의 수기숫자를 인식하였으며, 매우 심하게 왜곡된 숫자는 인식하지 못하였다.

  • PDF

형상 분해를 이용한 손동작 인식 (Hand Gesture Recognition Using Shape Decomposition)

  • 최준영;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.223-224
    • /
    • 2010
  • 본 논문에서는 형상 분해(Shape Decomposition)를 이용한 손동작 인식 방법을 제안한다. 형상 분해 방법을 손동작 인식에 적용함으로써 다양한 동작에 대해서 유연한 인식이 가능하며, 기존의 형상 분해 방법을 손 형상 분해에 적합하게 효율적으로 개선함으로써 실시간 연산이 가능하도록 하였다.

  • PDF

손 동작을 통한 인간과 컴퓨터간의 상호 작용 (Recognition of Hand gesture to Human-Computer Interaction)

  • 이래경;김성신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2930-2932
    • /
    • 2000
  • In this paper. a robust gesture recognition system is designed and implemented to explore the communication methods between human and computer. Hand gestures in the proposed approach are used to communicate with a computer for actions of a high degree of freedom. The user does not need to wear any cumbersome devices like cyber-gloves. No assumption is made on whether the user is wearing any ornaments and whether the user is using the left or right hand gestures. Image segmentation based upon the skin-color and a shape analysis based upon the invariant moments are combined. The features are extracted and used for input vectors to a radial basis function networks(RBFN). Our "Puppy" robot is employed as a testbed. Preliminary results on a set of gestures show recognition rates of about 87% on the a real-time implementation.

  • PDF

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘 (Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile)

  • 박영민
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.411-417
    • /
    • 2021
  • 인간과 컴퓨터의 상호작용을 연구하는 분야를 HCI(Human-computer interaction)라고 한다. 이 분야는 인간과 컴퓨터 간에 서로 소통하면서 정보를 인식하는 방법에 대해 연구하는 학문 분야이다. 본 연구는 사람과의 상호작용을 위한 손동작 인식에 대한 연구로써 기존 인식방법의 문제점을 살펴보고 인식률을 개선하기 위한 알고리즘을 제시한다. 사람의 손 모양이 포함된 영상을 대상으로 피부색 정보를 바탕으로 손 영역을 추출하고, 주성분 분석을 이용하여 무게중심 프로필을 계산한다. 이렇게 얻은 정보를 미리 정의된 형상들과 비교하여 손동작을 인식률을 높이는 방법을 제안하였다. 기존의 무게중심 프로필은 회전으로 인한 손의 변형에 대해 잘못된 손동작 인식을 결과를 보여주었으나, 본 연구에서는 무게중심 프로필을 이용하고 모든 윤곽선의 점들과 무게중심 사이의 거리가 가장 긴 점을 시작점으로 하여 무게중심 프로필을 다시 개선함으로써 강건한 알고리즘을 제시하였다. 손동작 인식을 위하여 센서가 부착된 장갑이나 특별한 마커를 사용하지 않으며, 별도의 청색 스크린을 설치하지도 않는다. 이 결과에 대해 가장 가까운 거리의 특징벡터를 찾아 잘못된 인식을 해결하고, 적당한 경계치를 구하여 성공과 실패를 구분한다.

Dynamic Manipulation of a Virtual Object in Marker-less AR system Based on Both Human Hands

  • Chun, Jun-Chul;Lee, Byung-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권4호
    • /
    • pp.618-632
    • /
    • 2010
  • This paper presents a novel approach to control the augmented reality (AR) objects robustly in a marker-less AR system by fingertip tracking and hand pattern recognition. It is known that one of the promising ways to develop a marker-less AR system is using human's body such as hand or face for replacing traditional fiducial markers. This paper introduces a real-time method to manipulate the overlaid virtual objects dynamically in a marker-less AR system using both hands with a single camera. The left bare hand is considered as a virtual marker in the marker-less AR system and the right hand is used as a hand mouse. To build the marker-less system, we utilize a skin-color model for hand shape detection and curvature-based fingertip detection from an input video image. Using the detected fingertips the camera pose are estimated to overlay virtual objects on the hand coordinate system. In order to manipulate the virtual objects rendered on the marker-less AR system dynamically, a vision-based hand control interface, which exploits the fingertip tracking for the movement of the objects and pattern matching for the hand command initiation, is developed. From the experiments, we can prove that the proposed and developed system can control the objects dynamically in a convenient fashion.

HOG를 이용한 파트 기반 손 검출 알고리즘 (Part-based Hand Detection Using HOG)

  • 백정현;김지수;윤창용;김동연;김은태
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.551-557
    • /
    • 2013
  • 지능형 로봇 연구 분야에 있어, 손을 이용한 제스처 인식은 매우 중요한 연구 분야로 간주 되고 있으며, 스마트 폰, 스마트 TV 등에 상용화 되어왔다. 제스처 인식에 있어, 강인한 손 검출 기술을 필수적인데, 손의 모양이 일정치 않고, 복잡한 배경이나 조명변화 아래서는 손 검출이 쉽지 않다는 어려움이 있다. 본 논문은 실내 환경에서 사용자가 가리키는 방향을 인식하기 위한 손 검출 알고리즘을 제안한다. 손 검출에 대한 오검출을 최대한 줄이기 위해, 머리-어깨 검출 결과를 기반으로 손 검색 영역을 한정시키고, 피부색을 이용해 최소한의 후보군들을 발생시켜, HOG-SVM을 이용하여 손을 검출하였다. 그리고 머리-어깨, 손 검출 결과를 통해 팔의 방향 각도를 추정하였다. 제안된 방법은 실제 실내 환경에서 추출된 영상을 통해 실험을 진행하였고, 강인한 성능을 확인하였다.

비디오 컨텐츠 검색을 위한 형태론적 손짓 인식 알고리즘 (Morphological Hand-Gesture Algorithm for Video Content Navigation)

  • 김정훈;최종호;최종수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.37-40
    • /
    • 2001
  • The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the real-time processing. A key idea of the algorithm proposed in this paper is to apply morphological shape decomposition. The primitive elements extracted from a hand gesture have very important information including the directivity of the hand gestures. Based on this algorithm, we proposed the morphological hand-gesture recognition algorithm using feature vectors extracted from lines connecting the center points of a main-primitive element and sub-primitive elements. Through the experiments, we applied to the video contents browsing system with natural interactions and demonstrated the efficiency of this algorithm.

  • PDF

인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석 (Analysis of Face Direction and Hand Gestures for Recognition of Human Motion)

  • 김성은;조강현;전희성;최원호;박경섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

PC-based Hand-Geometry Verification System

  • Kim Young-Tak;Kim Soo-Jong;Lee Chang-Gyu;Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun;Tack Han-Ho;Lee Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권3호
    • /
    • pp.247-254
    • /
    • 2006
  • Biometrics are getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry can be used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. It could also be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. This system presents verification results based on hand measurements of 20 individuals. The verification process has been tested on a size of $320{\times}240$ image, and result of the verification process have hit rate of 95% and FAR of 0.020.