• Title/Summary/Keyword: Han river water

Search Result 1,691, Processing Time 0.027 seconds

Temporal Analysis of Trends in Dissolved Organic Matter in Han River Water

  • Lee, Hye-Won;Choi, Jung-Hyun
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.256-260
    • /
    • 2009
  • This study used the extensive monitoring datasets of the Korea Ministry of Environment to examine trends in dissolved organic carbon (DOC) in Han River raw water. To estimate the organic contents of water, we adopted allied parameters such as biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as substitutes for DOC. Spatial and temporal analyses were performed on monthly BOD and COD data from 36 monitoring stations (14 for Main Han River, 7 for North Han River and 15 for South Han River) measured from 1989 to 2007. The results of trend analysis indicated that, on the whole, water quality according to BOD showed a downward trend at more than 67% of monitoring stations (9 for Main Han River, 6 for North Han River and 9 for South Han River). However, the water quality of COD showed an upward trend at more than 78% of monitoring stations (8 for Main Han River, 7 for North Han River and 13 for South Han River). The upward trend of COD contrary to the BOD trend indicates that there has been an increase in recalcitrant organic matter in Han River water that is not detectable by means of BOD.

Seasonal variation of water qualities in the upper and middle reaches of the Han River (1988. 8$\sim$1989. 9) (한강 상류와 중류지역에서 측정한 일반수질의 계절적 변화(1988. 8$\sim$1989. 9))

  • Lee, Sang-Jun;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.1 s.29
    • /
    • pp.106-116
    • /
    • 1990
  • This study was conducted to investigate of water qualities in the upper and middle reaches of the Han River. For this purpose, water was sampled at Kwangjin and 1st Han-River Bridges of the Han River in Seoul and analysed from August, 1988 to September, 1989. The results are summarized as follows : 1. Water quality at 1st Han-River Bridge was more polluted than that at Kwangjin Bridge. 2. Except biological oxygen demand (BOD), turbidity, suspended solid (SS), dissolved oxygen (DO), DO saturation (DOS), ammonia nitrogen ($NH_3-N$), nitrite nitrogen ($NO_2-N$) and chloride ion ($Cl^-$) at Kwangjin and 1st Han-River Bridges were lower as compared with the previous data before redevelopment of the Han River. 3. SS, DO and pH at Kwangjin and 1st Han-River Bridges could be classified to the 1st grade in environmental water quality standard. DOS at Kwangjin Bridge was over 100% and that at 1st Han-River Bridge was below 100% in the Han River. BOD at Kwangjin Bridge could be classified to End grade and that at 1st Han-River Bridge to 3rd grade in environmental water quality standard. 4. The higher the level of water was, the lower the levels of turbidity and SS, and $NH_3-N$ was decreased with increasing water level at 1st Han-River Bridge. DO was decreased as water temperature went up but DOS was increased with DO. BOD was positively correlated with nitrite-nitrogens. 5. Turbidity and SS at the both sites and Chloride ion ($Cl^-$) at Kwangjin Bridge were increased in July and August. And DO at the both sites and $NH_3-N$ at 1st Han-River Bridge were decreased in at July and August.

  • PDF

A Study on the Administration for the Han River Water Quality Control (漢江 水質保全 行政에 관한 硏究)

  • Kim, Kwang Hyop
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.2
    • /
    • pp.9-40
    • /
    • 1984
  • This thesis purports to overview the diverse administrative and organizational factors and plannings developed by the government organizations, municipal or otherwise, to tackle the Han River water pollution issues in the past years. This thesis also looks into the ever-worsening Han River water pollution problems, in particular, in terms of the various government plans ostensibly designed to reduce the pollution level but with little success. Also dealt with are the efficiencies with which the laws and decrees on water pollution the administrative organizations put to use in the prosecution of the diverse antiwater pollution projects involving the Han River basin. From the early 1960's up to the 1970's the government had concentrated on the growth-oriented economic policy with the result that little attention had been paid to the water pollution and other environmental issues that are bound to arise from the massive economic growth. Belatedly, the five-year Hah River Development Project was initiated in 1982 with emphasis on reducing the water pollution level at Hah River to the minimum. The following are the gists of the thesis and recommendations for the future antiwater pollution plans by the administrative organizations: 1. Documents to date indicate that the irrigation projects along the Han River area had been the main focus of attention during the Yi Dynasty and under the Japanese rule of the country. 2. Despite that the water pollution issue became the subject of many debates among the academic and research institutions in the 1960's and in the 1970's, the administrative organizations in charge of the Han River water quality control failed to come up with a concrete plan for the river's water quality control. 3. Nevertheless, the water pollution of the Han River area in fact began in the 1950's, with the unprecedented concentration into Seoul of population and the industrial facilities on a larger scale, in particular, enforced by the government's strong growthoriented policy in its Economic Development plans in the 1960's. 4. Starting in the 1960's, the Han River water pollution level dramatically increased, but the government was reluctant to promulgate or put into effect strong measures to curb the many factors contributing to the river water pollution, thus worsening the environmental issues along the Han River basin. 5. The environmental protection law and other laws and decrees relating to the antiwater and air pollution issues that were subsequently put into effect underwent so many changes that efficient anti-water pollution policies could not be effected for the Han River basin. The frequent organizational reshuffle within the administrative units concerned with environmental problems has resulted in the undue waste in personnel management and finance. 6. The administration on the environmental protection could not be efficiently carried out due to the organizational overlapping. Under the existing law, frequent organizational frictions and inefficiency are bound to occur among the central government offices themselves, as well as between the central government and the Seoul city administration, and among the city's administrative offices over the conservation of the Han River basin and over the river's anti-water pollution issue. 7. In the planning and prosecution of the Han River project, political influences from the president down to the lower-level politicious appear to have been involved. These political influences in the past had certainly had negative influence on the project, nevertheless, it appears that in the recent years, these political influences are not all that negative in view of the fact that they serve as a positive contributing factor in developing a better water quality control project along the Han River basin. The following are a few recommendations based on the data from the thesis: First, officials in charge of the Han River water quality control should pay attention to a careful screening of the opinions and recommendations from the academic circles and from the public should be made so that the government could better grasp the core issues in the environmental problems that require preventive and other necessary measures. Second, vigorous redistribution policies of population and industrial facilities away from the Seoul area should be pursued. Third, the government should refrain from revising or revamping too frequently the laws and decrees on the anti-water pollution, which is feared to cause undue inconveniences in the environmental administration. Fourth, a large-scale streamlining should be made to the existing administrative organization in an effort to do away with the inter- and intra-organizational friction. It is recommended that a secretariat for the Hah River basis conservation be established. Fifth, High-level administrative officials, with a thorough knowledge and vision on the Han River water quality control, should be prepared to better deal with the budgeting and personnel management for the Han River water pollution control not only at the control government, but also at the Seoul city municipal government levels. Environmental issues should be kept distinct from political issues. Environmental issues should not serve as a window-dressing for sheer political purposes. Sixth, the Hah River proiect should also include, along with the main Han River basin, those areas covering North Han River, South Han River, and the tributaries to the main river basin. The 'Han River Basin Water Quality Control Board' should be established immediately as a means of strengthening the current Han River basin water quality control policy. Seventh, in drawing up the Han River proiect, the administrative officials should be aware that Han River basin is a life line for those people in the region, providing them with not only a sheer physical space, but with a psychological living space for their everyday life.

  • PDF

Water Quality and Phytoplankton Distribution Pattern in Upper Inflow Rivers of Lake Paldang (팔당호 상류 유입하천의 수질 및 식물플랑크톤 분포 패턴)

  • Park, H.-K.;Byeon, M.-S.;Kim, E.-K.;Lee, H.-J.;Chun, M.-J.;Jung, D.-I.
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.615-624
    • /
    • 2004
  • The distribution pattern of water quality parameters and phytoplankton biomass in upper inflow rivers of lake Paldang had surveyed. In North-Han river system, nutrient concentrations and algal biomass was below the standard of mesoand oligotrophy from lake Soyang to lake Paldang, maintaining good water quality, except the N5 site located near the Chuncheon-Si, showing high nutrients concentrations and algal biomass. The algal biomass of the South-Han river system showed oligotrophic level in the upstream near the lake Chungju, and increased along the flow direction showing eutrophic level in the downstream within the lake Paldang area. On the other hand, the highest concentrations of nutrients were detected in the middle stream near the Yeoju-Si and Yangpyung-Gun rather than in the downstream suggesting algal biomass in lake Paldang would not come from the upper river area but come from the growth within the lake area using nutrients from the upper inflow river.

Identification of pollutant sources using water quality and stable isotope ratios of inflow tributaries in the lower reaches of the Han-River

  • Hong, Jung-Ki;Lee, Bo-Mi;Son, Ju Yeon;Park, Jin-Rak;Lee, Sung Hye;Kim, Kap-Soon;Yu, Soon-Ju;Noh, Hye-ran
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-76
    • /
    • 2019
  • Despite the expansion of sewage treatment facilities to reduce pollutants in the tributaries of the Han River, water pollution accidents such as fish deaths continue to frequently occur. The purpose of this study was to identify the pollutant sources using water quality and stable isotope ratio (${\delta}^{15}N$, ${\delta}^{13}C$, ${\delta}^{15}N-NH_4$, ${\delta}^{15}N-NO_3$) analysis results in the three inflow tributaries (Gulpocheon (GP), Anyangcheon (AY) and Sincheon (SC)) of the Han River. Water quality was analyzed in June and October from 2013 to 2017, and the results showed that the concentrations of nutrients, such as T-N, $NO_3-N$, and T-P, were increased at GP4, AY3, SC3, and SC4, which lie downstream of sewage treatment facilities. The results of ${\delta}^{15}N$ for June 2017 indicated that the source of nitrogen was sewage or livestock excreta at GP4 and SC4, and organic fertilizers at AY3 and SC3. ${\delta}^{15}N-NO_3$ results suggested that the source of nitrogen was related to organic sewage, livestock or manure at GP4, AY3 and SC4. Therefore, GP4 and SC4 were more influenced by effluent from sewage treatment facilities than by their tributaries, AY3 and SC3 were considered to be influenced more by their tributary than effluent from sewage treatment facilities. With the results of this study, the source of contamination (sewage treatment facility effluent) of river inflow downstream of Han River could be confirmed using water quality and stable isotope ratio.

Analysis of the Effect of Water Quality Improvement on Seomgang and South Han River by Securing the Flow during the Dry Season (갈수기 유량 확보에 따른 섬강 및 남한강 본류 갈수기 수질 개선 효과 분석)

  • Lee, Seoro;Lee, Gwanjae;Han, Jeongho;Lee, Dongjun;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.25-39
    • /
    • 2019
  • The water pollution Accident in the South Han River is increasing due to increase of pollutants inflow from small streams from rural areas and reduced flow rate. This study predicted the change of water quality in the main stream of the South Han River due to climate change through the linkage of watershed and water quality models. Also, This study analyzed the effect of water quality improvement on Seomgang and the South Han River by securing the flow during the dry season. According to the scenarios for securing the river flow during drought season, the river flow in the Seomgang is increased up to 2.19 times, and the water quality during the drought season was improved up to $BOD_5$ 20.5%, T-N 40.8%, T-P 53.4%. Also, the water quality of the main stream of the South Han River improved to 5.22% of $BOD_5$, 5.42% of T-N and 7.69% of T-P as the river flow was secured from the Seomgang. The result of this study confirms that securing the baseflow in the Seomgang according to the scenarios for securing the river flow during the dry season has a positive effect on the improvement of the water quality of the rivers in the main river of the Seomgang and South Han River. The results of this study will contribute to the establishment of reasonable management to improve the water quality of the main stream of the Seomgang and South Han River.

Investigation on Water Quality Variation Characteristics during Dry Season in Namhan River Drainage Basin (남한강수계 저수기 수질변동 특성에 관한 연구)

  • Lee, H.J.;Kong, D.S.;Kim, S.H.;Shin, K.S.;Park, J.H.;Kim, B.I.;Kim, S.M.;Jang, S.H.;Cheon, S.U.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.889-896
    • /
    • 2007
  • From the direct outflow of Chungju Dam to the junction of water body and watershed in Paldang lake is the scope of this research. This study performed to investigate the main cause of water quality deterioration and the influenced region in the middle field range of the Namhan river Basin with the onsite measurement of water quality and flow rate simultaneously during spring dry season. The purpose of this study is to find out the time-spatial variation characteristics of water quality and flow rate. Following the flow direction $BOD_5$ and $COD_{Mn}$ concentration increased to the highest value of 3.7 mg/L, 5.9 mg/L at Wolgesa respectively. Chl.a concentration increased to $50mg/m^3$ or so at Kangsang, after that it decreased to $37mg/m^3$ at the junction of Paldang lake. Organic matter concentration variation trend showed similar than that of Chl.a. Also $BOD_5$ concentration tendency was similar to Chl.a in every measuring sites except Paldang lake mixing zone. The major factors of water quality deterioration in Namhan river and Paldang lake during dry season were algal bloom and followed internal production. High phosphorus load from Dalcheon and Seom river caused dry season algal bloom and internal production in transitional zone which was stagnant area in downstream of Namhan river.

Assessment of Water Quality in the Lower Reaches Namhan River by using Statistical Analysis and Water Quality Index (WQI) (통계분석 및 수질지수를 이용한 남한강 하류 유역의 수질 평가)

  • Cho, Yong-Chul;Choi, Hyeon-Mi;Ryu, In-Gu;Kim, Sang-hun;Shin, Dongseok;Yu, Soonju
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.114-127
    • /
    • 2021
  • Water pollution in the lower reaches of the Namhan River is getting worse due to drought and a decrease in water quantity due to climatic changes and hence is affecting the water quality of Paldang Lake. Accordingly, we have used a water quality index (WQI) and statistical analysis in this study to identify the characteristics of the water quality in the lower reaches of the Namhan River, the main causes of water pollution, and tributaries that need priority management. Typically, 10 items (WT, pH, EC, DO, BOD, COD, SS, T-N, T-P, and TOC) were used as the water quality factors for the statistical analysis, and the matrix of data was set as 324 × 10·1. The correlation analysis demonstrated a strong correlation between Chemical Oxygen Demand (COD) and T-P with a high statistical significance (r=0.700, p<0.01). Furthermore, the result of principal component analysis (PCA) revealed that the main factors affecting the change in water quality were T-P and organic substances introduced into the water by rainfall. Based on the Mann-Kendall test, a statistically significant increase in pH was observed in SH-1, DL, SH-2, CM, and BH, along with an increase in WQI in SH-2 and SM. BH was identified as a tributary that needs priority management in the lower reaches of the Namhan River, with a "Somewhat poor" (IV) grade in T-P, "Fair" grade in WQI, and "Marginal" grade in summer.

A Study on Grade Classification for Improvement of Water Quality and Water Quality Characteristics in the Han River Watershed Tributaries (한강 수계 지류 하천의 수질 특성 및 수질 개선을 위한 등급화 방안 연구)

  • Cho, Yong-Chul;Park, Minji;Shin, Kyungyong;Choi, Hyeon-Mi;Kim, Sanghun;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.215-230
    • /
    • 2019
  • The objective of this research is to evaluate the water quality characteristics using the statistical analysis of major tributaries in the Han River and to provide water quality improvement plan by selecting tributaries that should be preferentially managed by river grade classification method. The major 15 tributaries in Han River watershed were monitored for discharge and water quality during January-December 2017. As a result of the correlation analysis, the river discharge has been not correlation with other water quality constituents (p>0.05) but COD and TOC were significantly correlated (r=0.957, p<0.01). The main cause of water quality fluctuation was organic pollutants and nutrients in the principal component analysis (PCA) method. The BOD, COD, TOC, TN, and TP were found to be significantly different (p<0.05) by seasonal in result of one-way ANOVA analysis. Result of river grade classification by quantitative indicators the tributaries requiring improvement of water quality were Gulpocheon, Anyangcheon, Wangsukcheon, and Tancheon which affected by wastewater treatment plant.In this research, we determined tributaries that need to improve the water quality of Han River watershed and it can be used as an important data for efficient water quality management.

Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System (한강 수계에서의 다차원 시변화 수리.수온 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.