• Title/Summary/Keyword: Han river estuaries

Search Result 20, Processing Time 0.026 seconds

A Study on the Origin of Organic Matter in Seawater in Korean Estuaries Using Chemical Oxygen Demand (화학적산소요구량을 이용한 하구해역의 해수중 유기물 기원 고찰)

  • Kim, Young-Sug;Koo, Jun-Ho;Kwon, Jung-No;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.735-749
    • /
    • 2018
  • In this study, one studied the principal factors and water-quality components that determine the concentration of chemical oxygen demand (COD) in seawater in estuaries, such as the Han, Geum, Youngsan, Seomjin, and Nakdong rivers in Korea. The principal factors determining the concentration of COD in seawater indicated by the principal component analysis were salinity, exogenous origin and autochthonous resources based on chlorophyll-a. Moreover, organic matter in the submarine sediment layer also had a secondary effect. Regression slope assessed the contribution of water-quality components to determine the concentration of COD in the estuary. One found that the effect of salinity on the overall survey was significant. Moreover, the effect of chlorophyll-a was also appeared in April and August. In each estuary, the most significant contribution factor was chlorophyll-a in the Nakdong River and salinity in the Han and Yongsan rivers. The contribution of salinity and chlorophyll-a were found to be the largest in the Geum River. The salinity and chlorophyll-a in the Seomjin River showed a low contribution.

Reproducibility Evaluation of Stratification Using EFDC Model in Nakdong River (EFDC 모형을 이용한 낙동강에서의 성층현상 재현성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.561-573
    • /
    • 2017
  • Nakdong River was recently dredged with multi-functional weirs construction. Therefore, the depth was deepened and the lag time also increased. As a result, stratification occurred in some sections with deep water depth, and it also caused the increase of algal bloom phenomenon. The purpose of this study is to evaluate reproducibility of stratification in the Nakdong River by applying the EFDC model, which is a three-dimensional hydraulic and water quality analysis model proving the reproducibility of stratification phenomena in reservoirs and estuaries. In order to reproduce the Nakdong river water temperature and DO stratification, EFDC model was constructed in the downstream part of the Nakdong river and sensitivity analysis was performed on key parameters sensitive to stratification. Sensitivity analysis was used to reproduce stratification by selecting optimal parameters. The results of this study can be used as basic data for the analysis of various destratification scenarios.

Using GIS to Estimate Estuarine Wetlands in Three Major Estuaries and to Quantify Wetland Changes over the Last Century (GIS를 활용한 하구의 습지추정 및 변화추이 분석에 관한 연구)

  • Rho, Paikho;Lee, Chang-Hee
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2007
  • Estuarine wetland, where freshwater meets saltwater, is a transitional ecosystem that is valuable ecologically for a variety of reasons, such as feeding and breeding sites for birds, fish, and wildlife. However, research on the spatial distribution and temporal dynamics of estuarine wetlands in Korea is rare. As a fundamental basis for wetland conservation, this study quantified the wetlands in three major estuaries, and evaluated the temporal dynamics of the wetlands since the 1910s. In particular, this study classified the wetland types into mud flat, sand, and emergent-plant types, and estimated the change of each wetland type, using topographic maps produced in the 1910s, 1970s, and 2000s. The wetlands in both the Han and Youngsan River estuaries have declined since the 1910s, but the rate of wetland decline was relatively low before the 1970s, compared to that since the 1970s. The impact of human activities, such as the Youngsan Watershed Comprehensive Development Project and the construction of estuary barrages, has disrupted the estuary cycles and destroyed huge amounts of wetland in the Youngsan estuary. By contrast, estuarine wetlands have been preserved in the small Gahwa estuary, and provide a variety of habitats for plants and wildlife. A special management strategy for wetlands should be established as soon as possible.

  • PDF

Spatial Distribution of Epilithic Diatom Communities in the Estuary of Korean Peninsula (한반도 하구역 부착돌말류의 공간적 분포)

  • Kim, Ha-Kyung;Cho, In-Hwan;Kim, Young-Hyo;Lee, Min-Hyuk;Kim, Yong-Jae;Won, Du-Hee;Hwang, Su-Ok;Byun, Jung-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • With land-use (cover) and water quality, the distributional characteristics of epilithic diatom communities were studied with 193 samples from estuaries of Korean peninsula between 2015 and 2016. Of total 394 taxa classified, Nitzschia perminuta (19.6%) and N. inconspicua (14.0%) were the 1st and 2nd dominant species. Using a cluster analysis, the epilithic diatom communities of Korean estuaries were divided into four groups (G1-G4). Ecological characteristics of each group were followed: G1 was located in estuaries of the East Sea, and characterized by high forest land-use and high DO and low nutrients; G2 was the eastern part of the South Sea, and characterized by low turbidity and nutrients; G3 was the western part of the South Sea, and characterized by high agriculture, low electric conductivity and low salinity; G4 was the Yellow Sea, and characterized by high nutrients. The environmental factors having significant correlation with diatom distributions were as follows: TN to G1, turbidity to G2, agriculture to G3, and TP to G4. Moreover, the important factors affecting the occurrence of indicator species were forest land-use for Fragilaria construens var. venter in G1, turbidity for Rhoicosphenia abbreviata in G2, urban land- use and total phosphorus (TP) for Bacillaria paradoxa and Hantzschia amphioxys of G3, and TP and turbidity for N. ovalis and Stephanodiscus invistatus of G4. These results collectively indicate that the distribution of epilithic diatom communities in Korean peninsula was largely effected by water quality and land cover/use.

The study for grading of the mudflat by birds (조류에 의한 갯벌의 등급화 연구)

  • Lee, Ki Sup;Kim, Mi Ran;Lee, Si Wan;Lee, Han Soo
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2004
  • This study was carried out to grade and evaluate the intertidal mudflat by birds. The mudflat was graded by two methods such as the scoring and ranking. First, for the scoring of the mudflat, five factors were estimated; population size, the number of protected species, the individuals of protected birds, the number of species(or subspecies) over 1% level of the survival population, and 1% level of the domestic population. After scoring of these five factors, the grade was scored by total. Second, for the ranking, six factors were estimated; population size, the density of birds, the index of species diversity, species richness, species evenness, and population stability. After ranking of these six factors, the grade was relatively ranked. Five grade by scoring was the important mudflat for the value of international preservation, and the most mudflats of the estuary gained V grade. The higher grades by ranking were the mudflats of Nakdonggang and Mankyunggang river estuaries. And the inner mudflats were more valuable than the outer mudflats in Mankyunggang & Dongjingang river estuaries. The grading of the mudflat by birds can be used for estimating and appointing of the important mudflats, and suggested the objective of criteria for the effective preservation and management.

  • PDF

Two-Dimensional Numerical Simulation of Saltwater intrusion in Estuary with Sigma-Coordinate Transformation (연직좌표변환을 이용한 하구에서의 염수침투에 관한 2차원 수치모의)

  • Bae, Yong-Hoon;Park, Seong-Soo;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1263-1267
    • /
    • 2007
  • A more complete two-dimensional vertical numerical model has been developed to describe the saltwater intrusion in an estuary. The model is based on the previous studies in order to obtain a better accuracy. The non-linear terms of the governing equations are analyzed and the $\sigma$-coordinate system is employed in the vertical direction with full transformation which is recently issued in several studies because numerical errors can be generated during the coordinate transformation of the diffusion term. The advection terms of the governing equations are discretized by an upwind scheme in second-order of accuracy. By employing an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. In previous researches, some terms induced from the transformation have been intentionally excluded since they are asked the complicate discretization of the numerical model. However, the lack of these terms introduces significant errors during the numerical simulation of scalar transport problems, such as saltwater intrusion and sediment transport in an estuary. The numerical accuracy attributable to the full transformation is verified by comparing results with a previous model in a simply sloped topography. The numerical model is applied to the Han River estuary. Very reasonable agreements for salinity intrusion are observed.

  • PDF

Effects of Coastal Environment by Discharge from the Sewage Treatment Plant (해안방류된 하수처리수가 해양환경에 미치는 영향)

  • Shin, Bumshick;Kim, Kyu-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.127-133
    • /
    • 2020
  • Most sewage treatment plants located offshore are discharged to the shore either directly or through rivers. Therefore, the water quality of the treated water discharged from the sewage treatment plant affects the water quality of the river water discharged to the river and the ocean. In this study, field surveys and numerical simulations were conducted to investigate the effect of treated water from the sewage treatment plant adjacent to the coastal environment. As a result of analyzing the water quality and sediment quality with the samples collected from the river and the estuary where the treated water was discharged to understand the impact on the coast, the treated water discharged from the sewage treatment plant was discharged to the river without exceeding the design criteria. However, the water quality discharged to the shore through estuaries was more contaminated than treated water. The cause of water quality deterioration of coastal effluent is due to the sedimentation of estuary temporarily by longshore sediment sransport which appeared around the estuary, the occurrence of estuary obstruction, and the increase of stagnant time in the estuary. As it was released and discharged, it was analyzed to affect the water quality, water quality and marine life around the estuary. Therefore, in the case of the east coast where the longshore sediment transport is strong, when planning the sewage treatment facility discharged to the ocean, it is necessary to closely examine the water quality change of the river water in the treated water such as the river mouth occlusion by the longshore sediment transport.

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF