• Title/Summary/Keyword: Hammer Energy Ratio

Search Result 28, Processing Time 0.023 seconds

Hammer Energy Level of SPT in Korea (표준관입시험의 해머에너지 수준)

  • 이호준;박용원
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.117-126
    • /
    • 1996
  • In spite of many advantages such as the simplicity in test procedure, Standard Penetration Test(SPT) results contain some errors caused by the variability of test equipment, instruments and test procedures. Especially, it is inevitable that the measured SPT hammer energy is different from the theoretical value because of energy loss. In this paper, the hammer energy level is measured during the performance of the field SPT in Korea by using a ultra-sonic system and PC.program. As the results of this study, the average hammer energy ratio of the R-P hammer and the Trip hammer is calculated at 64.2%, and at 75.0% respectively. The average energy ratio of the SPT for the R-P hammer is calculated at 46% and at 54% for the Trip hammer, by applying the rod energy ratio 0.72.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 1 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 1)

  • 조성민;정종홍;김동수;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.469-476
    • /
    • 2001
  • The Ν-value in the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the doughnut hammer with the hydraulic lift system and the automatic trip hammer system were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA) . The rod energy ratio, ΕR$\_$r/ was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ΕR$\_$r/ also varies according to the energy instrumentation system and the analysis methods.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 2 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 2)

  • 조성민;정종흥;이우진;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.71-78
    • /
    • 2002
  • The N-value from the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the various type of equipment were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA). The rod energy ratio, ERr was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ERr also varies according to the energy instrumentation system and the analysis methods.

  • PDF

Rod Energy Ratio Measurement of SPT (표준관입시험의 동적효율 측정)

  • Lee, Ho-Chun;Kim, Byeong-Il;Park, Yong-Won
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-182
    • /
    • 1997
  • It is known that some amount of loss in impact energy takes place due to some limitations and problems during the performance of the field SPT. Actual energy level tractsferred to the rod should be measured to correct the SPT-N values tested in the field In this paper, the ratio of energy transferred to the rod through the anvil to impact energy is measured by using sharpy impact test equipment and also analysed by using GRL-WEAP This result is certified and compared with that of field SPT As the results of this study, the average rod energy ratio of the R-P hammer and the Trip hammer is calculated at 0.726 and 0.728 respectively, but it is suggested that 0.72 should be used. By using the hammer energy ratio 64.2% and 75.0% obtained from field measurement, the average energy ratio of the SPT for the R-P hammer is calculated at 46.7% and 54.5% for the Trip hammer.

  • PDF

A Study on Hammer Performance Evaluation (항타장비의 성능평가 연구)

  • 홍헌성;이명환;조천환;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.405-412
    • /
    • 2002
  • The performance of a hammer/driving systems is a major factor which affects bearing capacity and integrity of installed piles. Hammer performance can be evaluated from the results of dynamic pile testing using Pile Driving Analyzer(PDA). By comparing the rated energy with measured maximum transferred energy(EMX), the energy transfer ratio(ETR) can be calculated. This paper based on the dynamic measurements of 442 cases in 130 piling projects and evaluated ETR according to the hammer types(hydraulic and drop hammers) and pile types(steel and concrete piles).

  • PDF

Ratio of Hammer Energy and Dynamic Efficiency of Standard Penetration Test (표준관입 시험 해머의 에너지비와 동적효율)

  • Lee, Chang-Ho;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.5-12
    • /
    • 2005
  • SPT hammer energy and its delivery are hon to influence the N value. The SPT hammer energy is classified into theoretical energy, velocity energy, rod energy and dynamic efficiency. In this study, the rod energy and the velocity energy are measured directly by PDA and Digital Line-Scan Camera which are most widely used type of SPT apparatus in Korea. The Dynamic efficiency is calculated through measured data. As the results of this study, the averages of rod energy ratio of donut, safety and automatic hammer are measured at 49.57, 61.60, and at $87.04\%$ by FV method. The averages of hammer velocity of donut, safety and automatic hammer are measured at $3.177{\pm}0.872$, $3.385{\pm}0.681$, and at $3.651{\pm}0.550$ m/s by Digital Line-Scan Camera, with the dynamic efficiencies at 0.732, 0.801, and 0.973 respectively.

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

Performance of KICT-type Large Penetration Test (LPT) (한국형 대형관입시험 장비의 개발 및 현장 적용성 평가)

  • Kim, Young-Seok;Kim, Young-Chin;Hong, Sung-Wan;Kang, Jae-Mo;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.603-610
    • /
    • 2007
  • It is well known that the standard penetration test (SPT) has been used in all over the world to get geotechnical properties of the ground. However, it is difficult to apply the SPT to the dense sand, gravel, weathered rock, etc. For the application of the SPT in these grounds, it is necessary to change in the diameter and the impact energy of the SPT. For the improvement of site investigation technology, Large Penetration Testing device (KICT-type LPT) was developed and applied to the in situ condition. The drop height and weight of the hammer in developed system were decided as 760 mm and 150 kg, respectively. Semi-auto hammer drop system identical with KS F2307 and JI A1259S was adopted. And the developed sampler has the inner diameter of 63 mm and the length of 500 mm with the adjustment of energy ratio to the SPT of 1.5. The hammer energy level was measured during the performance of the KICT-type LPT using SPI system (quality control system from driven piles).

  • PDF