• Title/Summary/Keyword: Hall sensorless control

Search Result 27, Processing Time 0.029 seconds

Control Algorithm for PMSM using Rectangular Two Hall Sensors Compensated by Sensorless Control Method (센서리스 제어 기법에 의해 보완된 두 개의 구형파 홀센서를 이용한 PMSM 제어 알고리즘)

  • Lee, Jung-Hyo;Lee, Taek-Ki;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.40-47
    • /
    • 2012
  • The PMSM position sensor using two rectangular hall sensors can restrictively acquire the 90[$^{\circ}$] position information of rotor according to electrical angle. Thus, the control method using this position sensor cannot react properly to a rapid load torque change. On the other hand, even though a sensorless method has the advantage of acquiring instantaneous rotor position information, the accuracy of position sensor can be determined by the gain value of estimator. This paper suggests a robust speed control method on torque fluctuation condition, which combines low cost two rectangular hall sensors and sensorless control method.

Sensorless Control of a Permanent Magnet Synchronous Motor with Compensation of the Position Error Using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 사용한 영구자석형 동기전동기의 센서리스 제어시의 위치오차 보정)

  • Kim, Kyung-Min;Lee, Jung-Hyo;Kong, Tae-Woong;Hwang, Chun-Hwan;Lee, Won-Cheol;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.115-117
    • /
    • 2008
  • Generally, because of the cost and the restricted manufacture standard, the motor control for home appliance have been used the method using hall sensors or the sensorless method. In the conventional sensorless method using home appliance, the resistor and the back-EMF coefficient are varied by the motor speed and the load torque. Therefore, these variations cause the position error when the sensorless control is operated. This paper proposes the compensation method for sensorless position error using 2-hall sensor pulse signals.

  • PDF

Position Error Compensation at the Sensorless Control of PMSM using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 사용한 영구자석형 동기전동기의 센서리스 제어시의 위치오차 보상)

  • Kim, Kyung-Min;Lee, Jung-Hyo;Hwang, Chun-Hwan;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • Low costed position sensor or sensorless control method is generally used in the motor control for home appliance because of the material cost and manufacture standard restriction. In conventional sensorless method, the stator resistance and back-EMF coefficient are varied by the motor speed and load torque variation. Therefore, position error occurred when the motor is operated by sensorless control method because of these variations. In this paper, the compensation method is proposed for sensorless position error using 2 hall sensors.

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

A Study on the Signal Processing Method for the Hall Sensorless Position Control of ETC Control System using a BLDC Motor (ETC 구동용 BLDC 제어시스템의 홀센서리스 위치제어를 위한 신호처리기법에 관한 연구)

  • Lee, Sang-Hun;Lee, Seon-Bong;Park, Cheol-Hu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.92-99
    • /
    • 2008
  • This paper describes an signal processing method for the hall sensorless position control of ETC control system using a BLDC motor. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analog voltage output on the throttle valve instead of BLDC motor for detecting rotor position of motor. So the additional commutation information is necessarily needed to control the mentioned ETC module. In order to estimate and determine the commutation state, it is proposed to properly manipulate the resolution of A/D converter considering the mechanical parameter, that is, the number of motor slot and the ratio of reduction gear. Through this method, the estimation of commutation state for operating the system is possible and the discrete signal for commutation is stably obtained. The validity of the method is examined through the experimental results.

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Hall Sensor Fault Detection and Fault-Tolerant Control of High-Speed PMSM Drive System (고속 영구자석 동기전동기 구동장치의 홀센서 고장검출 및 보호제어)

  • Jang, Myung-Hyuk;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • This paper presents a novel hall sensor fault detection and fault-tolerant control method for a high-speed permanent magnet synchronous motor (PMSM) drive system. A phase locked loop (PLL) type position estimator is used with a conventional interpolation based rotor position estimator to reduce position errors due to misalignment of hall sensors. The expected trigger time of hall sensor's output is used for detecting hall sensor fault condition and the PLL type position estimator is reconfigured for fault-tolerant control at the hall sensor fault condition. The proposed method can minimize current ripples during the transition from sensored control using hall sensors to sensorless control. Experimental results have been proposed to prove the validity of the proposed method.

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.

Sensorless BLDC Motor Control to Drive Fins for Flight Attitude Control of a Guided Artillery Munition (유도형 탄약의 조종날개 제어용 Sensorless BLDC 전동기 구동시스템 개발)

  • Lee, Tae-Hyung;Kim, Sang-Hoon;Cho, Chang-Yeon;Pak, Chang-Ho;Kim, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.342-348
    • /
    • 2014
  • In this paper, a BLDC(Brushless DC) motor control system for driving fins to control the flight attitude of the guided artillery munition is developed. This system adopts a sensorless control scheme without any position sensor such as a Hall sensor fragile at high altitudes. The sensorless control of the BLDC motor is achieved by using commutation signals obtained from the measured pole voltages. The position control of the fin is also performed by using of the estimated speed from the commutation signals. The experimental results on the actual fin drive system demonstrated that the developed sensorless control algorithm can give an excellent position control performance.

characteristics of a sensorless brushless motor (센서가 없는 브러쉬레스 전동기의 특성)

  • Park, C.S.;Yoon, S.H.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.385-387
    • /
    • 1999
  • Brushless DC Motors are widely used because of their high power ratio and easy control. But the brushless DC Motors need rotor Position- and speed- sensor such as encoder, resolver and hall sensor. The position sensor has present several disadvantages from the standpoint of drive cost, machine size and reliability. Hall sensors are used generally because of low cost but their operating temperature is limited up to $75^{\circ}C$ because of sensitivity of temperature. Now a day many research projects are on the development of sensorless brushless DC motors to correct these disadvantages. In this paper, characteristics such as starting, change of speed and load of a sensorless brushless DC motor are investigated.

  • PDF