• Title/Summary/Keyword: Hall Sensors

Search Result 217, Processing Time 0.024 seconds

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Characteristics of Ni-Fe Core Materials for Hall Current Sensor (홀소자 전류센서를 위한 니켈강 코어 소재 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.505-509
    • /
    • 2014
  • In this research, the structural, physical and electrical characteristics of Ni-Fe core chosen to minimize the errors of the Hall current sensors were investigated and Hall current sensor using Ni-Fe core was fabricated. In the result, the fabricated Ni-Fe sample exhibited the maximum hardness about 29.5 GPa and the low friction coefficient about 0.35, and electrical resistivity over $90mOhm{\cdot}cm$. And also Hall current sensor using the fabricated Ni-Fe core showed linear current-voltage properties for DC current at $25^{\circ}C$ temperature.

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Non-contact critical current measurement using hall probe (Hall probe를 이용한 비접촉 임계전류 측정)

  • Kim, Ho-Sup;Lee, Nam-Jin;Ha, Dong-Woo;Baik, Seung-Kyu;Kim, Tae-Hyung;Ko, Rock-Kil;Ha, Hong-Soo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-8
    • /
    • 2009
  • Non-contact critical current measurement apparatus was developed using hall probe which measures the magnetic field distribution across the width of superconducting tape. The hall probe consists of 7 independent hall sensors which lie in a line 600 ${\mu}m$. The difference between maximum and minimum magnetic field in the magnetic filed distribution is a main parameter to determine the critical current. As preliminary research, we calculated the magnetic field intensity at the middle sensor, which is a minimum magnetic field and generated by the circular shielding current modeled by Bean model. We confirmed that there are some parameters that affect on the minimum magnetic field; the distance between superconducting layer and hall sensor, the width of superconducting tape, and the critical current distribution across the width of superconducting tape. Among these parameters, the distance between superconducting layer and hall sensor highly influences on the minimum magnetic field.

  • PDF

The analysis on TMA gas-sensing characteristics of ZnO thin film sensors (ZnO 막막 센서의 TMA 가스 검지 특성 분석)

  • 류지열;박성현;최혁환;김진섭;이명교;권태하
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.46-53
    • /
    • 1997
  • The TMA gas sensors are fabricated with the ZnO-based thin films grown by a RF magnetron sputtering method. The hall effect measurement and AES analysis are carried out to investigate the effects of the sputtering gases and dopants which effect on the electrical resistivity and sensitivity to TMA gas. We measure the cfhanges of the surface carrier concentration, haall electron mobility, electrical resistivity, surface condition, and depth profile of the films. The ZnO-based thin film sensors sputtered in oxygen, or added with dopants showed a high sruface carrier concentration, film sensors sputtered in oxygen and doped with 4.0 wt.% $Al_{2}$O$_{3}$, 1.0 wt.% TiO$_{2}$, and 0.2 wt% v$_{2}$O$_{5}$ showed the highest surface carrier concentration of 5.952 * 10$^{20}$ cm$^{-3}$ , hall electron mobility of 176.7 cm$^{2}$/V.s, lowest electrical resistivity of 6*10$^{-5}$ .ohm.cm and highest sensitivity of 12. These results were measured at a working temperature of 300.deg. C to 8 ppm TMA gas.

  • PDF

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Design of Magneto-Operational Amplifier Using Hall Device (Hall 소자를 이용한 자기 연산 증폭기 설계)

  • Baek, Kyoung-Il;Lee, Sang-Hun;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • We have constructed the magneto-operational amplifier(MOP) using the advantages of Hall device and an operational amplifier. The MOP necessarily requires a high impedance circuit, a differential-to-single-ended convert-sion circuit and feedback-input-element for operational amplifier characteristics. We have presented a new differential-to-single-ended conversion operational amplifier(DSCOP) having such characteristics. We have designed the MOP using the DSCOP and Hall device and simulated its characteristics, and finally we have constructed the system with discrete elements, and measured its magnetic characteristics.

  • PDF

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Magnetic Nano-biosensor Technology (자성 나노바이오센서 기술)

  • Lee, Jung-Rok
    • Vacuum Magazine
    • /
    • v.5 no.1
    • /
    • pp.4-8
    • /
    • 2018
  • Many devices based on magnetism such as power generators and motors are frequently used in real life. Magnetic materials at nano-scale can be utilized as storage devices such as magnetic tapes and hard disk drives as well as spintronics. In addition to spintronics, magnetic biosensors are another interesting application of magnetic devices at nano-scale. Here, we briefly review magnetic nano-biosensors including Hall-effect sensors, giant magnetoresistive sensors, and tunnel magnetoresistive sensors for many biomedical applications.

INTEGRATED MAGNETIC SENSORS: AN OVER VIEW

  • Cristolovenau, Sorin
    • The Magazine of the IEIE
    • /
    • v.13 no.1
    • /
    • pp.86-95
    • /
    • 1986
  • The basic physical principles involved in the operation of monolithic magnetic sensors are reviewed and technological aspects outlined. More or less conventional devices based on Hall effect, magnetoresistance or current path deflection are described. It is shown that such sensors with 2, 3, 4 or 5 terminal contacts are achievable with standard silicon integrated circuit process. Several kinds of magnetodiodes (p+nn+,p+n, Schottky, MOS, memory, CMOS) have been fabricated on Si and on SOS films and present attractive properties. Finally, the magneto-transistor family is discussed with emphasis to split-terminals, CMOS, unijunction and fila-mentary devices.

  • PDF