• Title/Summary/Keyword: Half-bridge boost converter

Search Result 72, Processing Time 0.026 seconds

Simultaneous Control of Power Factor Corrector and Electronic Ballast for Fluorescent Lamp Using One Chip Micom (원칩 마이컴을 이용한 형광등용 역률보상기 및 전자식 안정기의 동시제어)

  • Park, Hyo-Sik;Han, Woo-Yong;Lee, Gong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.166-170
    • /
    • 2004
  • In this paper, it has been proposed the simultaneous control of PFC (power factor corrector) and electronic ballast for fluorescent lamp by one chip micro-controller. Boost DC-DC converter is adopted for PFC, and half bridge inverter for electronic ballast. It controls, simultaneously and independently, the boost DC-DC converter and the half bridge inverter. As PFC and electronic ballast are controlled by one chip micro-controller, it is possible to achieve the simpler and the cheaper controller for fluorescent lamp. Experimental results have shown the feasibility of the proposed simultaneous control of PFC and electronic ballast by one chip micro-controller.

Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier (전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법)

  • Park Hong-Sun;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF

Simultaneous controller of electronic ballast and PFC for a fluorescent lamp (형광등용 전자식 안정기 및 PFC 동시제어기)

  • Park, Hyo-Sik;Han, Woo-Yang;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • In this paper, it has been proposed the simultaneous controller of electronic ballast and PFC(power factor corrector) for fluorescent lamp by one chip micro-controller. Boost DC-DC converter is adopted for PFC, and half bridge inverter for electronic ballast. It controls, simultaneously and independently, the boost DC-DC converter and the half bridge inverter. As electronic ballast and PFC are controlled by one chip micro-controller, it is possible to achieve the cheaper controller for fluorescent lamp. Experimental result has shown the feasibility of the proposed simultaneous controller of PFC and electronic ballast.

  • PDF

A Novel Boost-Input Full-Bridge Converter

  • Sonoda Takahiro;Ninomiya Tamotsu;Tomioka Satoshi;Sato Kei;Terashi Hiroto
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.212-217
    • /
    • 2005
  • In order to correct the power boost topology has been used for easy control. But conventional boost topology has the following drawbacks: switching voltage surge, cross conduction current and right-half-plane zero of its control transfer function. Furthermore, in this topology the output voltage is always higher than the input voltage. As a result, a first-stage boost PFC converter needs to be connected with a second-stage DC-DC converter. A new topology which can be used as single stage PFC converter is proposed in this paper.

A Charging Circuit for the Power Stotage of Wind Power Generation (풍력발전의 전력저장을 위한 충전회로)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.635-644
    • /
    • 2002
  • Many generating units can be in parallel connection to one battery and inverter. However, one of the biggest problems we encountered is that wind speed is fluctuated sharply in accordance with the unstable weather conditions. To solve this problem, we need energy storage equipment such as storage lead-acid battery. We design a system and analyze its modeling so that it supplies a stable power to the load through DC-AC inverter part. In this paper, we applied dual step-up/down buck-boost converter and dual high-frequency half-bridge converter to the proposed system. These converters are used to store energy in the battery regardless of the change of the wind speed. The operation process of two proposed types of converters for high-power battery charging is discussed along with simulation and experimental result. We design a charging circuit which is applicable in the actual wind power generation system for 30kw and confirm the circuit's validity.

A Study on Single Stage High Power Factor AC-DC Converter (단일 전력단 고역률 AC-DC 컨버터에 관한 연구)

  • Lee, Won-Jae;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.590-597
    • /
    • 2000
  • Design of single state AC-DC converter with high power factor for low level applications is proposed. The proposed converter is obtained from the integration of a buck-boost converter and the half-bridge DC-DC converter. This converter gives the good power factor correction low line current harmonic distortions and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method and synchronous rectifier. The modelling and detailed analysis for the proposed converter are performed. To verify the performance of the proposed converter a 100W converter has been designed

  • PDF

A New Single-Stage PFC AC/DC Converter with Low Link-Capacitor Voltage

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 2007
  • A conventional Single-Stage Power-Factor-Correction (PFC) AC/DC converter has a link capacitor voltage problem under high line input and low load conditions. In this paper, this problem is analyzed by using the voltage conversion ratio of the DC/DC conversion cell. By applying this analysis, a new Single-Stage PFC AC/DC converter with a boost PFC cell integrated with a Voltage-Doubler Rectified Asymmetrical Half-Bridge (VDRAHB) is proposed. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of the link capacitor. An 85W prototype was implemented to show that it meets harmonic requirements and standards satisfactorily with near unity power factor and high efficiency over universal input.

A Study on Single-Stage High-Power-Factor Electronic Ballast for Discharge Lamps Operating in Critical Conduction Mode (임계모드에서 동작하는 단일 전력단 고역률 방전등용 전자식 안정기에 관한 연구)

  • Seo Cheol-Sik;Park Jae-Wook;Sim Kwang-Yeal;Kim Hae-Jun;Won Jae-Sun;Kim Dong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.601-608
    • /
    • 2005
  • This paper presents a novel single-stage high-power-factor electronic ballast for fluorescent lamps operating in critical conduction mode. The proposed topology is based on integration of boost converter as power factor corrector(PFC) and a half-bridge high frequency parallel resonant inverter into a single stage. The input stage of the boost converter is operating in critical conduction mode for positive and negative half cycle voltage respectively at line frequency(60Hz). So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. The simulated and experimental results for 100W fluorescent lamps operating at 42kHz switching frequency and 220V line voltage have been obtained. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.