• Title/Summary/Keyword: Half-bridge DC/DC Converter

Search Result 202, Processing Time 0.027 seconds

Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier (전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법)

  • Park Hong-Sun;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF

Comparative Performance Evaluation of Current-Mode Controls Adapted to Asymmetrical Half-Bridge Dc-to-Dc Converters (비대칭 하프 브릿지 직류-직류 컨버터에 적용된 전류 제어의 성능평가 비교)

  • Lim, Won-Seok;Choi, Byung-Cho;Park, Sung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.257-260
    • /
    • 2005
  • Three different current-mode control schemes, peak current-mode control, charge control, and average current-mode control, are investigated for applications to asymmetrical half-bridge dc-to-dc converters. The principles, implementation, and performance of the three control schemes are compared in an attempt to identify the irrespective merits and limitations. Design examples for feedback compensations are given for the three control schemes. A 50 W experimental asymmetrical half-bridge dc-to-dc converter was used to experimentally verify the theoretical results of the paper.

  • PDF

Boost-Half Bridge Single Power Stage Configured PWM DC-DC Converter for Residential PEFC Stack Interface.

  • Khairy, Fathy;Choi, Kwang-Ju;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.132-134
    • /
    • 2006
  • This paper presents the design and implementation of 1 kW prototype DC-DC power converter with bridge voltage-doubler suitable for small scale PEM fuel cell system and its associated control scheme. The operation principle of this converter is described using some operating waveforms and the switching mode equivalent circuits based on simulation results and a detailed circuit operation analysis and soft-switching conditions.

  • PDF

Bi-directional DC-DC Converter Design and Control for Fuel Cell System (연료전지 시스템용 양방향 DC-DC컨버터 설계 및 제어)

  • Kim Sung Ho;Jang Han Keun;Jang Su Jin;Won Chung Yuen;Kim yoon ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.479-483
    • /
    • 2004
  • Fuel Cell (FC) has slow response characteristic for load variation. During a load step, the inverter cannot pull more power from the fuel cell than is currently available so supplemental power must be provide by some sort of energy storage elements. In this paper, hi-directional do-dc converter for FC generation system is proposed to improve load response characteristic. The hi-directional converter interfaces the low voltage battery to the inverter dc link of FC generation system. The converter is based on a active full bridge in the primary side and on a half bridge in the secondary of a high frequency isolation transformer. The complete operating principles and simulation results in presented.

  • PDF

Development of DC-DC Converter for Arc Welding Machines using A Novel Half Bridge Soft Switching PWM Inverter (새로운 하프 브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발)

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • This paper presents a new full-bridge soft switching PWM DC-DC converter circuit topology that adding two switcher, two lossless snubber quasi-resonance capacity, two diode to power source for general welding machine. This half bridge soft switching Is low voltage hight current output that first coil current is smaller than second coil current in high frequency transformer can be obtained with decreasing path loss in conventional DC bus line switcher. As it operate ZCS/ZVS in full range, high frequency, high efficiency and high output are implemented at low voltage and high DC current switching power supplies. All of this items are got from simulation and the result of experiment. If make up for the weak points of this proposed circuit, it will be used more easily for next generation TIG, MIG and MAG type of arc-welding machine.

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Study on Power Conditioning System for Fuel Cell Power Generation with 2-Stage DC-DC Converter and Inverter (2단 구성 DC-DC 컨버터와 인버터에 의한 연료전지발전 계통연계시스템 연구)

  • Ju, Young-Ah;Oh, Eun-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1551-1558
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a LLC resonant DC-DC converter and 3-phase inverter. The LLC resonant converter boosts the fuel cell voltage of 26-48V up to 400V, using the hard-switching boost converter and the high-frequency ZVS half-bridge converter. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW LLC resonant converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize a real interconnection system for the fuel-cell power generation.

A Novel Three-Level ZVS PWM Inverter Topology for High-Voltage DC/DC Conversion Systems with Balanced Voltage Sharing and Wider Load Range (차단전압 균형과 넓은 부하범위를 갖는 새로운 3-레벨 ZVS PWM DC-DC 컨버터)

  • 송인호;유상봉;서범석;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.71-75
    • /
    • 1996
  • As the Three-level ZVS PWM DC-DC converter operates likewise full-bridge ZVS PWM DC-DC converter and the blocking voltage of each switching device is a half of the DC-link voltage, it is suitable for the high imput voltage applications. However, it has some problems as follows; The blocking voltage of each devices is unbalanced and it causes the power losses of the inner switching devices to be increased. Also, it has narrow load range so that the switching losses and the efficiency are reduced as it goes to the light load. This paper presents an nove Three-level ZVS PWM DC-DC converter, which can reduce the overvoltage of the outer switches, eliminate the unbalance of the voltage sharing between the switches at turn-off due to the stray inductances, and operate from no load to full load. The characteristics and the performances of the proposed Three-level ZVS PWM DC-DC converter are verified by simulation and experimental results

  • PDF

A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel (PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구)

  • Lee, Jae-In;Son, Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

An Asymmetric Half-Bridge Converter with Reduced Transformer Offset Current in Wide Input Voltage Range (넓은 입력 전압 범위에서 작은 트랜스포머 오프셋 전류를 가지는 비대칭 하프-브리지 컨버터)

  • Han, Jung-Kyu;Kim, Jong-Woo;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.431-439
    • /
    • 2017
  • An asymmetric half-bridge is one of the most promising topology in low-power application because of its small number of components and inherent zero-voltage switching capability. However, when it is designed taking into a hold-up time, it has large transformer offset current and small transformer turns-ratio, which severely decreases the total efficiency of s converter. In this paper, a new boost-integrated asymmetric half-bridge converter is proposed to solve these problems. The integrated boost converter compensates the hold-up time, thus facilitating optimal design in nominal state. As a result, the proposed converter can achieve high efficiency in nominal state. To verify the effectiveness of the proposed converter, an experiment is conducted using a 250-400 V input and 45 V/3.3 A output prototype.