• Title/Summary/Keyword: Half-Plane

Search Result 454, Processing Time 0.028 seconds

Electronic Structure and Magnetism of CrP/SrBi Interface: A First Principles Study

  • Bialek, Beata;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.93-96
    • /
    • 2007
  • We investigated the electronic structure and magnetic properties of zinc-blende CrP/SrBi interface by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the half-metallicity is destroyed when the two half-metals are in contact. Magnetic moments of the atoms forming the supercell differ considerably from the respective values obtained for the bulk structures of the two materials. Cr atoms being and not being in contact with Bi atoms have magnetic moment 3.43 and $2.69{\mu}_B$, respectively. Bi atoms lose their majority electrons which results in their negative polarization. Alkaline Sr atoms are very weakly negatively polarized. The spin distribution within the supercell is such that well separated regions of positive and negative polarization are seen, especially around the layer of P atoms being in contact with the layer of Sr atoms.

An Approximate Formulation for Scattering by Very Thin Dielectric Scatters (얇은 유전체의 산란특성 해석을 위한 근사식)

  • Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.765-774
    • /
    • 2004
  • In this paper, a novel approximate solution for scattering by a very thin planar homogeneous dielectric scatterer with an arbitrary shape is formulated. This solution is based on a volumetric integral equation and is expressed in terms of Fourier transform. It is shown that the obtained solution is reduced to an exact solution for an infinite dielectric slab. For 2D, or 3D scatterers, the formulation is verified numerically. Especially fur edge-on TM polarized wave incidence a closed-form solution of backscattering from a thin dielectric half-plane is formulated, which is very accurate for wide range of normalized surface impedance except very low impedances(│η│〈0.5).

Calculation of Stress Intensity Factor KI Using the Exact Solution in an Infinitely Deep Crack in a Half-Plane (반 무한 평판에 존재하는 반 무한 균열에서 엄밀 해를 이용한 응력확대계수 계산)

  • An, Deuk Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • In this study, we develop the exact field of mode I in an infinitely deep crack in a half-plane. Using this field, we obtain the exact stress intensity factor $K_{I}$. From the tractions on the crack faces induced by exact field, we calculate the stress intensity factor of this field. We compare the results with the stress intensity factor calculated using Bueckner's weight function formula and that calculated by using Tada's formula listed in "The Stress Analysis of Cracks Handbook" It was found that Bueckner's formula yields accurate results. However, the results obtained using Tada's formula exhibit inaccurate behavior.

The design and the analysis of a LED lens for forming a uniform illumination on an illuminating plane (균일한 조도를 위한 LED 조명용 렌즈 설계 및 분석)

  • You, Ilhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.954-964
    • /
    • 2015
  • In this research, an overlapped illumination model was newly proposed for designing a freeform LED lens with a uniform illuminance distribution on its illuminating plane. Based on the proposed model and conventional illumination models, freeform lenses were designed and their performances and tolerances were compared. As a result of the tolerance analysis about thickness change in lens, position, size change, central direction change of light emission and characteristic change in LED source. This proposed model and divergent illumination model are similar to the performance about central direction change of light emission in LED source. but the uniformity illumination value in this proposed model is more remarkably value than it in divergent illumination model about characteristic change in LED source.

Measurement of Unsteady Loading Noise from Hovering Rotor with Partially Inclined Ground (국부적으로 기울어진 지면을 고려한 제자리비행 로터의 비정상 하중 소음 측정)

  • Jang, Ji-Sung;Lee, Yong-Woo;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.140-143
    • /
    • 2008
  • Experiments are performed to consider the ground effects on unsteady loading and acoustic generation. Partially inclined plate is used to maximize the unsteadiness of the rotor. Indirect method to recognize the unsteady effect is used by measuring the noise in the normal direction from the rotor plane. The experiment is conducted with a square plate of about $9m^2$ and one half of the plate is placed parallel with the rotor plane and the other half is inclined. The height of the plate and the angle of the inclined plate can be changed. Helicopter noise is also measured at the 4 different positions to study the directivity of the rotor noise. The distance between microphone and rotor hub is 1.3m. Tonal noise and broad band noise are measured and analyzed. Thickness noise, steady loading noise and unsteady loading noise are investigated from the rotor noise measurement.

  • PDF

A Study on the Compensation of the Feedback Circuit in the Buck-boost DC-DC Converter (승강압형 DC - DC 콘버어터에 있어서 제어회로의 보상에 관한 연구)

  • Kim, Hee-Jun;Lee, In-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.111-117
    • /
    • 1990
  • This paper investigated the effect of the zero on the right-half-plane on stability in the buck-boost DC-DC converter which is one type of the switching regulator, and the stability region in connection with the output current was shown by evaluating the feed-back gain. From the result it is shown that the stability decreases by the existence of the zero on the right-half-plane. We carried out a compensation by a pole in the feedback circuit and obtained the available stability region in relation to the gain band-width product. These results proved to be the validity by experiment.

  • PDF

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Multi-step growth of a-plane GaN epitaxial layer on r-plane sapphire substrate by HVPE method (HVPE를 이용하여 r-plane 사파이어 위에 multi-step으로 성장시킨 a-plane GaN 에피층의 특성 연구)

  • Lee, Won-Jun;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Ha, Ju-Hyung;Choi, Young-Jun;Lee, Hae-Yong;Kim, Hong-Seung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.89-94
    • /
    • 2016
  • In this study, the crystalline property of a-plane GaN epitaxial layer grown on r-plane sapphire by a HVPE method has been investigated according to the V/III ratio and the growth time of multi-step growth. Furthermore, these results were compared with the previous result obtained from the single-step growth of a-plane GaN on r-plane sapphire substrate. In the multi-step growth for a-plane GaN epitaxial layer on r-plane sapphire, the FWHM values of rocking curve in GaN epitaxial layer were decreased as the HCl source flow rate and the growth time were increased. The void formed in epitaxial layer was continuously decreased as the growth time in first step and second step using a higher HCl flow rate was increased. As a result, the GaN layer obtained with the longest growth time on the first step and second step exhibited the lowest FWHM values of 584 arcsec and the smallest dependence of azimuth angle.

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Gain (고이득 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee Ha-Young;Braunstein Jeffrey;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.193-196
    • /
    • 2006
  • In this paper, two $4{\times}4$ rectangular patch array antennas operated at 20 GHz are implemented for the satellite communication. Two $2{\times}2$ sub-arrays are designed and used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. The HPBW(Half Power Beam Width) of the $4{\times}4$ microstrip patch array is 17.01 degrees in the E-plane and 17.71 degrees in the H-plane with a gain of 11.6dB in the experimental results. The HPBW of the recessed $4{\times}4$ microstrip patch array is 18.66 degrees in E-plane and 17.12 degrees in the H-plane with a gain of 12.55dB in the experimental results.

  • PDF