• Title/Summary/Keyword: Half-Pixel Motion Estimation

Search Result 12, Processing Time 0.027 seconds

A Fast Half Pixel Motion Estimation Method based on the Correlations between Integer pixel MVs and Half pixel MVs (정 화소 움직임 벡터와 반 화소 움직임 벡터의 상관성을 이용한 빠른 반 화소 움직임 추정 기법)

  • Yoon HyoSun;Lee GueeSang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.131-136
    • /
    • 2005
  • Motion Estimation (ME) has been developed to remove redundant data contained in a sequence of image. And ME is an important part of video encoding systems, since it can significantly affect the qualify of an encoded sequences. Generally, ME consists of two stages, the integer pixel motion estimation and the half pixel motion estimation. Many methods have been developed to reduce the computational complexity at the integer pixel motion estimation. However, the studies are needed at the half pixel motion estimation to reduce the complexity. In this paper, a method based on the correlations between integer pixel motion vectors and half pixel motion vectors is proposed for the half pixel motion estimation. The proposed method has less computational complexity than the full half pixel search method (FHSM) that needs the bilinear interpolation of half pixels and examines nine half pixel points to the find the half pixel motion vector. Experimental results show that the speedup improvement of the proposed method over FHSM can be up to $2.5\~80$ times faster and the image quality degradation is about to $0.07\~0.69(dB)$.

Sub-pixel Motion Estimation Algorithm with Low Computation Complexity for H.264 Video Compression (H.264 동영상 압축을 위한 낮은 복잡도를 갖는 부 화소 단위에서의 움직임 추정)

  • Lee, Yun-Hwa;Shin, Hyun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.639-642
    • /
    • 2005
  • Motion Estimation(ME) is an important part of video compression, because it requires a large amount of computation. Half-pixel and quarter-pixel motion estimation allows high video compression rates but it also has high computation complexity. In this paper we suggest a new and efficient motion estimation algorithm for half-pixel and quarter-pixel motion estimation using SAD values. In the method, an integer-pixel motion vector is found and then only three neighboring points of the integer-pixel motion vector is evaluated to find the half-pixel motion vector. The quarter-pixel motion vector is also found by using a similar method. Experimental results of our method shows 20% reduction in computation time, when compared with those of a conventional method, while producing same quality motion vectors.

  • PDF

Selective Multiresolution Motion Estimation Using Half-pixel Accuracy and Characteristics of Motion Vectors (반화소 단위 움직임 추정 및 움직임 벡터의 특성을 이용한 선별적인 계층적 움직임 추정)

  • 권성근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1813-1820
    • /
    • 2000
  • In this paper we proposed an efficient multiresolution motion estimation(MRME) algorithm using half-pixel accuracy motion estimation (HPAME) and characteristics of motion vectors in the baseband. Conventional MRME method needs exact motion vectors in the baseband because those are used as initial motion vectors in higher frequency subbands. Therefore the proposed method uses HPAME to estimate the motion vectors exactly in the baseband. Based on the characteristics of these motion vectors the motion vectors in the higher frequency subbands are selectively estimatied. That is motion vectors in the higher frequency subbands are estimated only for the blocks which have the half-pixel accuracy motion vectors in the baseband. In the proposed method by using HPAME in the baseband and selective motion estimation in the higher frequency subbands we can obtain reconstructed image with the similar quality with the conventional method though we reduce the computational complexity and the bit rate considerably.

  • PDF

A Fast Sub-pixel Motion Estimation Method for H.264 Video Compression (H.264 동영상 압축을 위한 부 화소 단위에서의 고속 움직임 추정 방법)

  • Lee, Yun-Hwa;Choi, Myung-Hoon;Shin, Hyun-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 2006
  • Motion Estimation (ME) is an important part of video coding process and it takes the largest amount of computation in video compression. Half-pixel and quarter-pixel motion estimation can improve the video compression rate at the cost of higher computational complexity In this paper, we suggest a new efficient low-complexity algorithm for half-pixel and quarter pixel motion estimation. It is based on the experimental results that the sum of absolute differences(SAD) shows parabolic shape and thus can be approximated by using interpolation techniques. The sub-pixel motion vector is searched from the minimum SAD integer-pixel motion vector. The sub-pixel search direction is determined toward the neighboring pixel with the lowest SAD among 8 neighbors. Experimental results show that more than 20% reduction in computation time can be achieved without affecting the quality of video.

Half-pixel Accuracy Motion Estimation Using the Correlation of Motion Vectors (움직임벡터의 상관성을 이용한 반화소단위 움직임 추정 기법)

  • Lee, Bub-Ki;Lee, Kyeong-Hwan;Choi, Jung-Hyun;Kim, Duk-Gyoo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.119-126
    • /
    • 1998
  • In this paper, we proposed two new methods of half-pel accuracy motion estimation using spatial correlation of half-pel accuracy motion vectors and stochastic characteristics between pixel accuracy motion vectors and half-pel accuracy motion vectors. We confirmed two facts : One is that the probability of having same half-pel accuracy motion vectors with neighboring blocks is high when having same pixel accuracy motion vectors. And the other is that there is high correlation between neighboring half-pel positions. These new half-pel motion estimation technique are shown to decrease the bit rates for vector coding and computational complexity with similar PSNR.

  • PDF

MOTION ESTIMATION METHOD BY EMPLOYING A STOCHASTIC SAMPLING TECHNIQUE

  • Seok, Jinwuk;Mah, Pyeong-Soo;Son, Yongki
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.1006-1009
    • /
    • 2003
  • In a motion estimation method for use in encoding a moving picture, a full-pixel motion vector is estimated by stochastically sampling a pixel to be processed in a predetermined-sized block of a previous frame or a next frame as a reference frame for each of a plurality of equal-sized blocks in a current frame. Then, a half-pixel motion vector is estimated based on the full-pixel motion vector. Accordingly, both the calculation amount and the calculation time required for the motion estimation are effectively reduced. Further, it can be prevented that the hardware becomes complicated. .

  • PDF

Half-Pixel Accuracy Motion Estimation Algorithm in the Transform Domain for H.264 (H.264를 위한 주파수 영역에서의 반화소 정밀도 움직임 예측 알고리듬)

  • Kang, Min-Jung;Heo, Jae-Seong;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.917-924
    • /
    • 2008
  • Motion estimation and compensation in the spatial domain check the searching area of specified size in the previous frame and search block to minimize the difference with current block. When we check the searching area, it consumes the most encoding times due to increasing the complexity. We can solve this fault by means of motion estimation using shifting matrix in the transform domain instead of the spatial domain. We derive so the existed shifting matrix to a new recursion equation that we decrease more computations. We modify simply vertical shifting matrix and horizontal shifting matrix in the transform domain for motion estimation of half-pixel accuracy. So, we solve increasing computation due to bilinear interpolation in the spatial domain. Simulation results prove that motion estimation by the proposed algorithm in DCT-based transform domain provides higher PSNR using fewer bits than results in the spatial domain.

Fast Multiresolution Motion Estimation in Wavelet Transform Domain Using Block Classification and HPAME (블록 분류와 반화소 단위 움직임 추정을 이용한 웨이브릿 변환 영역에서의 계층적 고속 움직임 추정 방법)

  • Gwon, Seong-Geun;Lee, Seok-Hwan;Ban, Seung-Won;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • In this paper, we proposed a fast multi-resolution motion estimation(MRME) algorithm. This algorithm exploits the half-pixel accuracy motion estimation(HPAME) for exact motion vectors in the baseband and block classification for the reduction of bit amounts and computational loads. Generally, as the motion vector in the baseband are used as initial motion vector in the high frequency subbands, it has crucial effect on quality of the motion compensated image. For this reason, we exploit HPAME in the motion estimation for the baseband. But HPAME requires additional bit and computational loads so that we use block classification for the selective motion estimation in the high frequency subbands to compensate these problems. In result, we could reduce the bit rate and computational load at the similar image quality with conventional MRME. The superiority of the proposed algorithm was confirmed by the computer simulation.

A Single-Chip Video/Audio CODEC for Low Bit Rate Application

  • Park, Seong-Mo;Kim, Seong-Min;Kim, Ig-Kyun;Byun, Kyung-Jin;Cha, Jin-Jong;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • In this paper, we present a design of video and audio single chip encoder/decoder for portable multimedia application. The single-chip called as video audio signal processor (VASP) consists of a video signal processing block and an audio single processing block. This chip has mixed hardware/software architecture to combine performance and flexibility. We designed the chip by partitioning between video and audio block. The video signal processing block was designed to implement hardware solution of pixel input/output, full pixel motion estimation, half pixel motion estimation, discrete cosine transform, quantization, run length coding, host interface, and 16 bits RISC type internal controller. The audio signal processing block is implemented with software solution using a 16 bits fixed point DSP. This chip contains 142,300 gates, 22 Kbits FIFO, 107 kbits SRAM, and 556 kbits ROM, and the chip size is $9.02mm{\times}9.06mm$ which is fabricated using 0.5 micron 3-layer metal CMOS technology.

  • PDF

Inter Coding using DST-based Interpolation Filter (DST 기반 보간 필터를 이용한 인터 코딩)

  • Kim, MyungJun;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.321-326
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) adopted the Discrete Cosine Transform-II (DCT-II) based interpolation filter to improve coding efficiency in motion compensation and estimation. In HEVC, the interpolation filters based on the DCT-II are composed of 8-point for half-pixel and 7-point for 1/4-pixel and 3/4-pixel. In this paper, a DST-VII based interpolation filter is used improve motion compensation and estimation. The experimental results which applied the DST-VII interpolation filter are presented. They show the 0.45% of average bitrate reduction in Random Access configuration and 0.5% of average bitrate reduction in Low Delay B configuration, respectively.