• Title/Summary/Keyword: Half b - connected

Search Result 27, Processing Time 0.024 seconds

Strength Performance Evaluation of Threaded Nail Joints of Wooden Retaining Wall Using Pitch Pine (Pinus rigida Miller) Square Timber (리기다 소나무 정각재를 사용한 목재옹벽의 직결나사못 접합부 내력 성능 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • A connection was made between a single stretcher and 2 headers with 2 threaded nails (Type-A), and another one between 2 stretchers and 2 headers with 4 threaded nails (Type-B) to use as specimens. Type-C was the stretchers that are connected with 2 threaded nails by half lap joint at end-distance 5D to reinforce Type-B, Type-C1 the stretchers that are connected by half lap joint at end-distance 10D, and Type-C2 with 3 threaded nails at end-distance 10D. Compressive shear strength of Type-C, the supplementation of Type-B, was decreased by 30%, compared with that of Type-B. Those of Type-B and Type-C1 that used longer end-distance than Type-C were about the same, and that of Type-C2 connected with 3 threaded nails was 1.28-times stronger than that of Type-C1. Connection of the retaining wall using existing square timber has a problem between long and short stretchers and 2 headers. So it was investigated in the experiment to replace it. Therefore, if Type-B is replaced with Type-C2 in constructing the retaining wall, the crack and the rupture of timber caused by threaded nail as well as construction period can be reduced, and also it can be expected to increase their own strength.

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

Analysis of a new Soft-Switching High-Frequency Inverter for High Current (대전류화를 위한 새로운 소프트 스위칭 고주파 인버터의 회로 해석)

  • Lee, E.Y.;Ra, B.H.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Kwak, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1187-1189
    • /
    • 2002
  • In the case of an existing high frequency inverter is became forced extinction by quick load change, due to be connected with series inductor on switch, it is destroyed or is generated conduction loss by resistance component in reactor. And, In the operation of high current with a soft switching, conduction loss can not neglect. In this paper, for the high current power source, we make sure of soft swtching operation and reducing surge when the forced extinction by using a connected switch with series inductor. Also, we poropos a topology of the half bridge type high frequency inverter that can be realized high amplitude operation of the load current. And, analyze the circuit to decide an opmtial circuit parameter.

  • PDF

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

The Operational Characteristics of High-speed Interrupter by Fault Types (고장 유형별 고속 인터럽터의 동작 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.278-283
    • /
    • 2013
  • With the increasing power demands, size of the fault current in electrical grids is steadily increasing, and it exceeds the breaking capacity of circuit breakers. To effectively cope with these problems, a high-speed interrupter was suggested. The high-speed interrupter provides fault current with a bypass to a fault current limiter in case of accidents and consequently, fault current can be restricted. In this study, behavioral characteristics of high-speed interrupter were analyzed by accident types occurred in a distribution system. When accidents occurred, a and b contact of the high-speed interrupter were turned-off and then, turned-on. Accordingly, fault current flowed to the circuit connected to a current limiting element, and the fault current limiter restricted fault current to within a half-cycle. Nevertheless, the behavior of the high-speed interrupter was slowed down by a switching surge. As a result, fault current was confirmed to be restricted not to within the anticipated half-cycle, but to after a half-cycle. Moreover, the behavioral characteristics of the high-speed interrupter changed not only by accident types, but by behaviors of R, S, and T phases. This was due to the errors in stroke lengths of the high-speed interrupters, which resulted in a slight time discrepancy among three interrupters. In addition, the switching behaviors of the b and a contact were confirmed not to have coincided due to the switching surge; b contact behaved first and a contact followed. because of this, accuracy of stroke length and switching surges through the solenoid suction increases may be necessary to resolve.

Fabrication and Test of the Three-Phase 6.6 kV Resistive Superconducting Fault Current Limiter Using YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 저항형 초전도 한류기 제작 및 시험)

  • Sim J.;Kim H. R.;Park K. B.;Kang J. S.;Lee B. W.;Oh I. S.;Hyun O. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 2004
  • We fabricated and tested a resistive type superconducting fault current limiter (SFCL) of three-phase 6.6 $kV_{rms}/200 A_{rms}$ rating based on YBCO thin films grown on sapphire substrates with a diameter of 4 inches, Short circuit tests were carried out at a accredited test facility for single line-to- ground faults, phase-to-phase faults and three-phase faults, Each phase of the SFCL was composed of 8${\times}$6 elements connected in series and parallel respectively. Each element was designed to have the rated voltage of 600 $V_{rms}$. A NiCr shunt resistor of 23 Ω was connected to each element for simultaneous quenches. Firstly, single phase-to-ground fault tests were carried out. The SFCL successfully developed the impedance in the circuit within 0.12 msec after fault and controlled the fault current of 10 $kA_{rms} below 816 A_{peak}$ at the first half cycle. In addition, in case of phase-to-phase fault and three- phase fault test. simultaneous quenches among the SFCLs of the phases successfully accomplished. In conclusion. the SFCL showed excellent performance of current limitation upon fault and stable operation regardless of the amplitude of fault currents.

A Study on the Reactor Protection System Composed of ASICs

  • Kim, Sung;Kim, Seog-Nam;Han, Sang-Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.191-196
    • /
    • 1996
  • The potential value of the Application Specific Integrated Circuits(ASIC's) in safety systems of Nuclear Power Plants(NPP's) is being increasingly recognized because they are essentially hardwired circuitry on a chip, the reliability of the system can be proved more easily than that of software based systems which is difficult in point of software V&V(Verification and Validation). There are two types of ASIC, one is a full customized type, the other is a half customized type. PLD(Programmable Logic Device) used in this paper is a half customized ASIC which is a device consisting of blocks of logic connected with programmable interconnections that are customized in the package by end users. This paper describes the RPS(Reactor Protection System) composed of ASICs which provides emergency shutdown of the reactor to protect the core and the pressure boundary of RCS(Reactor Coolant System) in NPP's. The RPS is largely composed of five logic blocks, each of them was implemented in one PLD, as the followings. A). Bistable Logic B). Matrix Logic C).Initiation Logic D). MMI(Man Machine Interface) Logic E). Test Logic.

  • PDF

Operation characteristics of SFCLs combined with a transformer in three-phase power system

  • Jung, B.I.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.30-33
    • /
    • 2013
  • The studies of superconducting fault current limiter (SFCL) for reduction of the fault current are actively underway in the worldwide. In this paper, we analyzed the characteristics of a new type SFCL using the conventional transformer and superconducting elements combined mutually. The secondary and third windings of this SFCL were connected the load and the superconducting element, respectively. The electric power was provided to load connected to secondary windings of the transformer in normal state of power system. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the ripple phenomenon of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the CT(current transformer) and then turn-on and turn-off switching behavior of the SFCL was performed by the SCR(silicon-controlled rectifier). As a result, the proposed SFCL limited the fault current within a half-cycle efficiently. We confirmed that the fault current limitation rate was changed according to the winding ratio of a transformer.

An Unequal Divider with Enhanced Physical Isolation Between Output Ports (출력포트 사이의 물리적 격리도를 향상시킨 비대칭분배기)

  • Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.359-363
    • /
    • 2014
  • This paper presents the design and performance of an unequal divider with physical separation and electrical isolation. This divider has a series $18{\Omega}$ resistor and 0.7 pF capacitor circuit between two quarter-wave transmission lines at half phase angle from input terminal. This design method was improved a physical isolation between output ports and easy connected other circuit because of unnecessary of extra transmission line. To show the validity of the unequal divider with complex isolation components, a 4:1 ratio unequal divider was designed and measured at center frequency of 2 GHz. The measured divider performances have the return loss of 17 dB, insertion loss of 1.5 dB and 7.7 dB, and isolation of 18 dB. Its performance is in good agreement with the simulated results.