• Title/Summary/Keyword: Half Wave Resonator

Search Result 24, Processing Time 0.017 seconds

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

Minimization of a CW CO2 Laser Output Ripple by using High Frequency Resonance Phenomena (고주파 공진현상을 이용한 CW CO2 레이저의 출력리플 최소화)

  • Sikander, Sakura;Kwon, Min-Jae;Kim, Hee-Je;Lee, Dong-Gil;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.798-802
    • /
    • 2013
  • In a conventional DC power supply used for CO2 laser, the circuit elements such as a rectifier bridge, a current-limiting resistor, a high voltage switch, energy storage capacitors ans a high-voltage isolation transformer using high turn ratio are necessary. Consequently, those supplies are expensive and require a large space. Thus, laser resonator and power supply should be optimally designed. In this paper, we propose a new power supply using high frequency resonance phenomena for CW(Continuous wave) CO2 laser (maximum output of 23W with discharge length of 450mm). It consists of a transformer including leakage inductance, magnetizing inductance and half-bridge converter, a three-stage Cockcroft-Walton and PFC(Power factor correction) circuit. The output ripple voltage can be controlled the minimum of 0.24% under the high frequency switching of 231kHz. Furthermore, the output efficiency was improved to 16.4% and the laser output stability of about 5.6% was obtained in this laser system.

Compact Open-stub Band-pass Filter with Narrow Bandwidth Using Impedance Mismatching of the Transmission- line (전송선로의 임피던스 부정합을 이용한 협대역 개방형 소형 스터브 대역통과 여파기)

  • Yoon, Ki-Cheol;Oh, Seung-Yeon;Oh, Kyoung-Min;Lee, Hyun-Wook;Hong, Tae-Ui;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • In this paper, the narrow band-pass filter with compact-size using the ${\lambda}g/2$ open stubs is proposed. The filter size is reduced by realization of transmission line at second harmonics and at the same time the power can be transferred to the output by using the fundamental wave generated in the resonator and the transmission line in which the impedance mismatch technique is adopted. Thus, the proposed filter can be reduced to half-length of horizontal transmission line than the conventional one. The experimental results show that insertion loss is 1.58 dB and return loss is 9.86 dB, and the fractional bandwidth is 10 % at the center frequency of 5.8 GHz. The filter size is $10.34{\times}18.56\;mm2$.

  • PDF

FBAR Devices Fabrication and Effects of Deposition Temperature on ZnO Crystal Growth for RF Filter Applications (RF 필터응용을 위한 FBAR 소자제작과 증착온도가 ZnO 박막의 결정성장에 미치는 영향)

  • Munhyuk Yim;Kim, Dong-Hyun;Dongkyu Chai;Mai Linh;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.88-92
    • /
    • 2003
  • In this paper, the characteristics of the ZnO films deposited on AI bottom electrode and the temperature effects on the ZnO film growth are presented along with the fabrication and their evaluation of the film bulk acoustic wave resonator (FBAR) devices. All the films used in this work were deposited using a radio-frequency (RF) magnetron sputtering technique. Growth characteristics of the ZnO films are shown to have a strong dependence on the deposition temperatures ranged from room temperature to 35$0^{\circ}C$ regardless of the RF power applied for sputtering the ZnO target. In addition, according to the growth characteristics of the distinguishably different micro-crystal structures and the degree of the c-axis preferred orientation, the deposition temperatures can be divided into 3 temperature regions and 2 critical temperatures in-between. Overall, the ZnO films deposited at/below 20$0^{\circ}C$ are seen to have columnar grains with a highly preferred c-axis orientation where the full width at half maximum (FWHM) of X-ray diffraction rocking curve is 14$^{\circ}$. Based on the experimental findings, several FBAR devices were fabricated and measured. As a result, the FBAR devices show return loss of ~19.5dB at resonant frequency of ~2.05GHz.

  • PDF