• 제목/요약/키워드: Half Value Layer method

검색결과 36건 처리시간 0.021초

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

A Method for Simultaneous Measurement of Air Kerma, Half Value Layer and Tube Potential in Quality Control Procedure of Diagnostic x ray units

  • Katoh, Tsuguhisa;Saitoh, Hidetoshi;Ohtani, Hiroki;Negishi, Tooru;Myojoyama, Atsushi;Ohno, Yuusuke;Sasaki, Takehito
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.294-297
    • /
    • 2002
  • For the quality control procedure of diagnostic x ray units, a method for simultaneous measurement of air kerma, half value layer and tube potential was developed utilizing a computed radiography system for intraoral radiography and film badge case. The response of average pixel values under the windows were calibrated by x rays generated at tube potentials from 40 to 140 kV with filtration from 1.5 to 3.7 mmAl. The calibration curves for half value layer and tube potential were derived as functions of attenuation factors by the 1.4 mmAl filter and the 0.2 mmCu filter. The energy dependency of the open window response was corrected by the calibration factor as a function of the attenuation factor by the 1.4 mmAl filter. The uncertainty of the estimated half value layer, tube potential and air kerma were 0.2 mmAl, 3.6 % and 5 %, respectively. It was thus suggested that this system could be applied to quality control program to detect the variation of working condition of x ray units in clinical use.

  • PDF

레이어가 있는 하프스페이스에서 페라이트코아가 있는 와류탐침에 대한 연구 (A Study on Eddy-current Probe with Ferrite Cores over a Layered Half-Space)

  • 김태원;변기량;최재훈;강유석;황호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.613-616
    • /
    • 1998
  • In this paper, a model of a Eddy-current probe coil with a ferrite core in the presence of a half-space with a layer is developed. The half-space with a layer is accounted for by computing the appropriate Green's function by using Bessel transforms. Upon introducing equivalent Amperian currents within a core to explain effect to a impedance change in the coil due to a (ferrite) core, we derive a volume integral equation, The integral equation is transformed via the method of moments into a vector-matrix equation, which is then solved using a linear equation solver. Through the above processing, we computed impedance value in a Eddy-current probe coil due to a conductivity change of layer.

  • PDF

MCNP 시뮬레이션을 통한 450 kVp 엑스레이 튜브의 콘크리트 차폐벽 두께 계산 및 반가층 방법을 이용한 계산과의 결과 비교 (Calculation of Concrete Shielding Wall Thickness for 450 kVp X-ray Tube with MCNP Simulation and Result Comparison with Half Value Layer Method Calculation)

  • 이상헌;허삼석;이은중;김찬규;조규성
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.29-35
    • /
    • 2016
  • Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal $0.02mGy\;wk^{-1}$ on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal. Essentially same result was obtained from the application of HVL method except that it suggest the need of additional 5 cm concrete wall thickness. Therefore, employing the result from HVL method calculation as an conservative upper limit of concrete shielding wall thickness was found to be useful; It would be easy, economic, and reasonable way to set shielding wall thickness.

가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정 (Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.

단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구 (A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Layer Latticed Dome)

  • 이정현;최일섭;이상주;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.12-19
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition and the connection type because it is organized by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling behavior of the structures is analyzed But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base on the linear buckling load by the eigen-value analysis.

  • PDF

디지털 방사선 시스템(DR)의 자동노출제어장치 이용 시 이온 챔버의 성능 평가를 위한 엔트로피 분석법의 유용성과 최적의 챔버 조합 모델 구현 연구 (Study on Usefulness of Entrance Surface Dose (ESD), Entropy Analysis Method to Evaluate Ionization Chamber Performance and Implementation of Optimal Chamber Combination Model when using Automatic Exposure Control (AEC) Device in Digital Radiography (DR))

  • 황준호;최지안;이경배
    • 한국방사선학회논문지
    • /
    • 제14권4호
    • /
    • pp.375-383
    • /
    • 2020
  • 본 연구는 자동노출제어장치 사용 시 이온 챔버의 성능과 조합에서 비롯된 문제를 정량적으로 분석하는 방법론을 제시하고 디지털 방사선 시스템의 성능을 최적화하고자 하였다. 실험방법은 복부와 골반부 검사에 사용된 파라미터의 X선질을 백분율 평균오차(PAE; Percentage Average Error)와 반가층(HVL; Half Value Layer)으로 평가하였다. 그 후 세 가지 이온 챔버를 조합했을 때의 입사표면선량(ESD; Entrance Surface Dose)과 엔트로피(Entropy)를 산출하여 방사선 출력의 안정성과 영상 품질을 분석하였다. 그 결과 실험에 사용한 디지털 방사선 시스템의 X선질은 모두 정상 범위의 백분율 평균오차와 반가층을 보였다. 입사표면선량은 챔버의 조합에 비례하여 증가하였고, 엔트로피는 세 개의 챔버가 조합됐을 때를 제외하고는 이온 챔버의 조합에 비례하여 증가하였다. 결론적으로 입사표면선량과 엔트로피를 이용한 분석은 이온 챔버의 성능과 조합의 문제를 평가하는데 유용한 방법인 것을 알 수 있었으며, 두 개 이하의 이온 챔버를 조합했을 때 디지털 방사선 시스템의 성능을 최적으로 유지할 수 있음을 알 수 있었다.

금속재료 표면층의 급격한 응력구배에 대한 X-Ray회절 특성값과 측정된 변형률의 해석방법 (Analysis Method of X-Ray Diffraction Characteristic Values and Measured Strain for Steep Stress Gradient of Metal Material Surface Layer)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제33권2호
    • /
    • pp.54-62
    • /
    • 2023
  • The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin2ψ method. When X-rays were used the relationship of εφψ-sin2ψ measured on the surface layer of the processing metal did not show linearity when the sin2ψ method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, σφ becomes a sin2ψ function. Since σφ cannot be used as a constant, the relationship in εφψ-sin2ψ cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren's diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 Imax max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.

Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성에 대한 제일원리 연구 (First-principles Study on Half-metallicity and Magnetism for Zinc-blende CrS(001) Surface)

  • 변영신;이재일
    • 한국자기학회지
    • /
    • 제15권5호
    • /
    • pp.257-260
    • /
    • 2005
  • Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성을 제일원리 방법을 이용하여 연구하였다. 이를 위해 (001)면에서 서로 다른 두 개의 원자로 끝나는 면, 즉 Cr원자로 끝나는 (001) 표면(Cr-Term)과 S원자로 끝나는 (001) 표면(S-Term)계의 전자구조를 총 퍼텐셜 선형보강평면파동(FLAPW) 에너지띠 방법을 이용하여 계산하였다. 계산된 상태밀도로부터 Cr-Term과 S-Term계 모두 그 표면에서 반쪽금속성이 유지됨을 알았다 Cr-Term계의 표면 Cr원자의 자기모멘트는 덩치상태($3.61\;{\mu}_B$)에 비해 상당히 큰 $4.07\;{\mu}_B$이었으며 S-Term의 경우 표면 바로 밑층 Cr원자의 자기모멘트는 덩치상태에 비해 상당히 감소한 $3.15\;{\mu}_B$의 값을 가졌다.