• Title/Summary/Keyword: Half Value Layer

Search Result 138, Processing Time 0.029 seconds

A Study on the Structural Characteristics and Metal Ornament of Jeonju-Jang (전주장의 구조적 특징과 금구장식 연구)

  • Baik, Da hee;Lim, Seung Taek
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.207-223
    • /
    • 2017
  • Jeonju-Jang is the wood furniture that was made in Chonbuk Jeonju province during the Joseon Dynasty, and was used by middle-upper social classes. It has value as a local cultural heritage because it has unique characteristics in terms of the shape of the furniture, the metal ornament and various functions are integrated in accordance with user's requirements. Therefore, the purpose of this study is to define the structural characteristics of the Jeonju-Jang through case studies of 16 existing artifacts in order to preserve and inherit the value as local cultural resources. The conclusion is as follows. First, Jeonju-Jang in the late period of Joseon Dynasty that is made up of one board to the bottom with the binding of the board. and the front wall, the Juibyuckkan and the Meoruemkan are omitted or made small, so the structure of the surface is simple. There are three or four drawers under the Cheon pan(top plate). There are drawers and shelf inside the hinged door. In the case of a two-layer type, there is a Gaegumeong type door which has half of one side hinged. Second, Jeonju-Jang of the Japanese Ruling Era had a Juibyuckkan by frame binding and an increase in the number of Meoruemkan. and it had independent legs. The Cheon-pan(top plate) was more left and right than both sides. Third, in the late Joseon Dynasty period as a feature of the metal ornaments, cast iron and yellow brass were used as materials. In the Japanese Ruling Era, nickel was mainly used. Various patterns were engraved and the number increased, and it became gorgeous surface as a whole.

A Study on Establishment of Basic Safety and Essential Performance Criteria of Mobile Computed Tomography (이동형 전산화단층촬영장치의 기본 안전 및 필수 성능 기준을 마련하기 위한 연구)

  • Kim, Eun Hye;Park, Hye Min;Kim, Jung Min
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.261-267
    • /
    • 2021
  • As the number of Coronavirus Disease-19 (COVID-19) patients increases in a global pandemic situation, the usefulness of mobile computed tomography (CT) is gaining attention. Currently, mobile CT follows the basic safety and essential performance evaluation criteria of whole-body or limited-view X-ray CT in order to obtain device approval and evaluation in the Republic of Korea. Unlike stationary CT, mobile CT is not operated in shielded areas but rather areas such as intensive care units, operating rooms, or isolation rooms. Therefore, it requires a different basic safety and essential performance evaluation standard than stationary CT. In this study, four derived basic safety evaluation criteria related to electrical, mechanical, and radiation safety were included (dose indication test, protection against stray radiation, safety measures against excessive X-rays, half-value layer measurement); and seven essential performance evaluation criteria were included (tube voltage accuracy, mAs accuracy, radiation dose reproducibility, CT number of water, noise, uniformity, and spatial resolution); total eleven basic safety and essential performance evaluation criteria were selected. This study aims to establish appropriate basic safety and essential performance evaluation criteria for simultaneously obtaining images with diagnostic value and reducing the exposure of nearby patients, medical staff, and radiologic technologists during the use of mobile CT.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Micro gadolinium oxide dispersed flexible composites developed for the shielding of thermal neutron/gamma rays

  • Boyu Wang;Xiaolin Guo;Lin Yuan;Qinglong Fang;Xiaojuan Wang;Tianyi Qiu;Caifeng Lai;Qi Wang;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1763-1774
    • /
    • 2023
  • In this study, a series of flexible neutron/gamma shielding composites are fabricated through the doping of Gd2O3 into the matrix of SEBS with (MGd2O3: MSEBS) % from 5% to 100%. Neutron transmittance test shows an exponential attenuation with the increase of areal density of Gd, in which the transmittance T ranges from 59.1440% to 35.3026%, with standard deviation less than 2.2743%, mass attenuation coefficient 𝜇m from 0.3194 cm2/g to 0.4999 cm2/g, and half value layer-HVL value from 2.4530 mm to 1.1313 mm. Shielding efficiency of the Gd2O3/SEBS composites is basically improved in comparison with that of B4C/SEBS. The transmittance T, mass/linear attenuation coefficient 𝜇m and 𝜇, HVL and effective atomic number Zeff for the shielding of γ rays (39 keV, 59 keV and 122 keV) are measured and calculated with XCOM as well as MCX programs. Finally, plots of the three dimensional relationships between transmittance, doping amount and thickness are provided to the guidance for engineering shielding design. In summary, the Gd2O3/SEBS composite is proved to be an effective flexible neutron/low energy γ rays shielding material, which could be of potential applications in the field of nuclear technology and nuclear engineering.

High Efficiency Green Phosphorescent Organic Light Emitting Devices using the Emission Layer of (TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 ((TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 발광층을 이용한 고효율 녹색 인광소자)

  • Jang, Ji-Geun;Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki;Ryu, Sang-Ouk;Chang, Ho-Jung;Gong, Myoung-Seon;Lee, Jun-Yeob
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.347-351
    • /
    • 2008
  • We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [$TCTA/TCTA_{1/3}TAZ_{2/3}/TAZ$] : $Ir(ppy)_3$ were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of ($TCTA_{1/3}TAZ_{2/3}$) : $Ir(ppy)_3$ and (TCTA/TAZ) : $Ir(ppy)_3$. The current density, luminance, and current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90^{\circ}{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ were $95\;mA/cm^2$, $25000\;cd/m^2$, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of $400\;cd/m^2$. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of $15000\;cd/m^2$, the current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of ($300{\AA}-TCTA_{1/3}TAZ_{2/3}$) : 10%-$Ir(ppy)_3$ and ($100{\AA}-TCTA/200{\AA}$-TAZ) : 10%-$Ir(ppy)_3$, respectively.

Derivation of Photon Energy Fluence and Mass Energy Absorption Coefficient for 1 Gy Absorbed Dose of Water in Brachytherapy using Ir192 Source (Ir192 선원을 이용한 근접치료에서 물 흡수선량 1 Gy에 대한 광자에너지 플루언스와 질량에너지흡수계수 유도)

  • Kim, Jong-Eon;Ahn, Il-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • The purpose of this study is to derive photon energy fluence and mass energy absorption coefficient for 1 Gy of absorbed dose of water in brachytherapy using an Ir192 source. From the radiotherapy physics written by Khan, the half-value of lead for the gamma ray beam of the Ir192 source was obtained. The linear attenuation coefficient and the mass attenuation coefficient were calculated from the obtained half-value layer of lead. By matching the calculated lead mass attenuation coefficient with the NIST mass attenuation coefficient data, the photon energy of the matching mass attenuation coefficient was determined as the effective energy. By matching the determined effective energy with the photon energy of the NIST data on the mass energy absorption coefficient of water, the mass energy absorption coefficient of water was obtained as 0.03273 cm2/g(32.73 cm2/kg). The photon energy fluence was calculated as 0.03055 J/cm2 by dividing the obtained mass energy absorption coefficient (32.73 cm2/kg) by the absorbed dose of water 1 Gy.

Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials (정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, two types of blue organic light-emitting device were designed. We have analyzed the characteristics of Type I device without a hole blocking layer, and analyzed the characteristics of Type II device using a hole blocking layer of BCP or BAlq materials with 30 ${\AA}$ thickness. We obtained the ITO having the work function value of 5.02 eV using $N_2$ plasma treatment method with the plasma power 200 W. Type I device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li, and type II device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/HBL/$Alq_3$/LiF/Al:Li. We have analyzed the characteristics of Type I and Type II device. The characteristics of the device were most efficiency on occasion of using a hole blocking layer of BAlq material with 30 ${\AA}$ thickness. Current density was 226.75 $mA/cm^2$, luminance was 10310 $cd/m^2$, Current efficiency was 4.55 cd/A, power efficiency was 1.43 lm/W at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device was 456nm. The full-width at half-maximum (FWHM) for the EL spectra was 57nm. CIE color coordinates were x=0.1438 and y=0.1580, which was similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

THE EFFECT OF THE AMOUNT OF INTERDENTAL SPACING ON THE STRESS DISTRIBUTION IN MAXILLARY CENTRAL INCISORS RESTORED WITH PORCELAIN LAMINATE VENEER AND COMPOSITE RESIN: A 3D-FINITE ELEMENT ANALYSIS (도재 라미네이트와 복합레진 수복 시 치간이개 양에 따른 접착계면의 응력분포에 관한 3차원 유한요소법적 연구)

  • Hong, Jun-Bae;Tak, Seung-Min;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.30-39
    • /
    • 2010
  • This study evaluated the influence of the type of restoration and the amount of interdental spacing on the stress distribution in maxillary central incisors restored by means of porcelain laminate veneers and direct composite resin restorations. Three-dimensional finite element models were fabricated to represent different types of restorations. Four clinical situations were considered. Type I, closing diastema using composite resin. Labial border of composite resin was extended just enough to cover the interdental space; Type II, closing diastema using composite resin without reduction of labial surface. Labial border of composite resin was extended distally to cover the half of the total labial surface; Type III, closing diastema using composite resin with reduction of labial surface. Labial border of the preparation and restored composite resin was extended distally two-thirds of the total labial surface; Type IV, closing diastema using porcelain laminate veneer with a feathered-edge preparation technique. Four different interdental spaces (1.0, 2.0. 3.0, 4.0 mm) were applied for each type of restorations. For all types of restoration, adding the width of free extension of the porcelain laminate veneer and composite resin increased the stress occurred at the bonding layer. The maximum stress values observed at the bonding layer of Type IV were higher than that of Type I, II and III. However, the increasing rate of maximum stress value of Type IV was lower than that of Type I, II and III.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.