DOI QR코드

DOI QR Code

High Efficiency Green Phosphorescent Organic Light Emitting Devices using the Emission Layer of (TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3

(TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 발광층을 이용한 고효율 녹색 인광소자

  • Published : 2008.07.27

Abstract

We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [$TCTA/TCTA_{1/3}TAZ_{2/3}/TAZ$] : $Ir(ppy)_3$ were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of ($TCTA_{1/3}TAZ_{2/3}$) : $Ir(ppy)_3$ and (TCTA/TAZ) : $Ir(ppy)_3$. The current density, luminance, and current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90^{\circ}{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ were $95\;mA/cm^2$, $25000\;cd/m^2$, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of $400\;cd/m^2$. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of $15000\;cd/m^2$, the current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of ($300{\AA}-TCTA_{1/3}TAZ_{2/3}$) : 10%-$Ir(ppy)_3$ and ($100{\AA}-TCTA/200{\AA}$-TAZ) : 10%-$Ir(ppy)_3$, respectively.

Keywords

References

  1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. R. Thomson and S. R. Forrest, Nature, 395, 151 (1998) https://doi.org/10.1038/25954
  2. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. of Appl. Physics, 90, 5048 (2001) https://doi.org/10.1063/1.1409582
  3. S. H. Kim, J. S. Jang, K. S Yook, J. Y. Lee, M. S. Gong, S. Ryu, G. K. Chang and H. J. Chang, J. of Appl. Phys. Lett., 103, 054502 (2008)
  4. C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 57, 531 (1990) https://doi.org/10.1063/1.103638
  5. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Appl. Phys. Lett., 79, 156 (2001) https://doi.org/10.1063/1.1385182
  6. V. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. Andrade and S. R. Forrest, Org. Electron., 4, 77 (2003) https://doi.org/10.1016/j.orgel.2003.08.003
  7. M. B. Khalifa, D. Vaufrey and J. Tardy, Organic Electronics, 5, 187 (2004) https://doi.org/10.1016/j.orgel.2003.11.006
  8. J. Sun, X. Zhu, X. Yu, M. Wong and H. S. Kwok, SID 07 DIGEST, 826 (2007)
  9. T. Zheng and W. Choy, J. Phys. D: Appl. Phys., 41, 055103 (2008) https://doi.org/10.1088/0022-3727/41/5/055103
  10. R. Farchioni and G. Gross, Organic Electronic Materials, p. 428, Springer Series in Materials Science, Berlin, (2001)
  11. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich and J. Salbeck, Appl. Phys. Lett., 85, 3911 (2004) https://doi.org/10.1063/1.1812378
  12. M. Toerker, M. Eritt, Ch. May, J. Amelung, C. Luber, R. Hermann, Ch. Zschippang, Y. Tomita and K. Leo, Proc. SID International Symposium, 37(2), 1471 (2006)
  13. K. Goushi, Y. Kawamura, H. Sasabem and C Adachi, Jpn. J. of. Appl. Phys. Lett., 43, L937 (2004) https://doi.org/10.1143/JJAP.43.L937
  14. B. J. Chen, X. W. Sun and K. R. Sarma, Mat. Sci. Eng. B., 139, 192 (2007) https://doi.org/10.1016/j.mseb.2007.02.007