• Title/Summary/Keyword: Hadoop optimization

Search Result 17, Processing Time 0.021 seconds

Measuring Hadoop Optimality by Lorenz Curve (로렌츠 커브를 이용한 하둡 플랫폼의 최적화 지수)

  • Kim, Woo-Cheol;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.249-261
    • /
    • 2014
  • Ever increasing "Big data" can only be effectively processed by parallel computing. Parallel computing refers to a high performance computational method that achieves effectiveness by dividing a big query into smaller subtasks and aggregating results from subtasks to provide an output. However, it is well-known that parallel computing does not achieve scalability which means that performance is improved linearly by adding more computers because it requires a very careful assignment of tasks to each node and collecting results in a timely manner. Hadoop is one of the most successful platforms to attain scalability. In this paper, we propose a measurement for Hadoop optimization by utilizing a Lorenz curve which is a proxy for the inequality of hardware resources. Our proposed index takes into account the intrinsic overhead of Hadoop systems such as CPU, disk I/O and network. Therefore, it also indicates that a given Hadoop can be improved explicitly and in what capacity. Our proposed method is illustrated with experimental data and substantiated by Monte Carlo simulations.

The Creation and Placement of VMs and Tasks in Virtualized Hadoop Cluster Environments

  • Kim, Tae-Won;Chung, Hae-jin;Kim, Joon-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1499-1505
    • /
    • 2012
  • Recently, the distributed processing system for big data has been actively investigated owing to the development of high speed network and storage technologies. In addition, virtual system that can provide efficient use of system resources through the consolidation of servers has been increasingly recognized. But, when we configure distributed processing system for big data in virtual machine environments, many problems occur. In this paper, we did an experiment on the optimization of I/O bandwidth according to the creation and placement of VMs and tasks with composing Hadoop cluster in virtual environments and evaluated the results of an experiment. These results conducted by this paper will be used in the study on the development of Hadoop Scheduler supporting I/O bandwidth balancing in virtual environments.

Optimization and Performance Analysis of Cloud Computing Platform for Distributed Processing of Big Data (대용량 데이터의 분산 처리를 위한 클라우드 컴퓨팅 환경 최적화 및 성능평가)

  • Hong, Seung-Tae;Shin, Young-Sung;Chang, Jae-Woo
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.55-71
    • /
    • 2011
  • Recently, interest in cloud computing which provides IT resources as service form in IT field is increasing. As a result, much research has been done on the distributed data processing that store and manage a large amount of data in many servers. Meanwhile, in order to effectively utilize the spatial data which is rapidly increasing day by day with the growth of GIS technology, distributed processing of spatial data using cloud computing is essential. Therefore, in this paper, we review the representative distributed data processing techniques and we analyze the optimization requirements for performance improvement of the distributed processing techniques for a large amount of data. In addition, we uses the Hadoop and we evaluate the performance of the distributed data processing techniques for their optimization requirements.

Access efficiency of small sized files in Big Data using various Techniques on Hadoop Distributed File System platform

  • Alange, Neeta;Mathur, Anjali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.359-364
    • /
    • 2021
  • In recent years Hadoop usage has been increasing day by day. The need of development of the technology and its specified outcomes are eagerly waiting across globe to adopt speedy access of data. Need of computers and its dependency is increasing day by day. Big data is exponentially growing as the entire world is working in online mode. Large amount of data has been produced which is very difficult to handle and process within a short time. In present situation industries are widely using the Hadoop framework to store, process and produce at the specified time with huge amount of data that has been put on the server. Processing of this huge amount of data having small files & its storage optimization is a big problem. HDFS, Sequence files, HAR, NHAR various techniques have been already proposed. In this paper we have discussed about various existing techniques which are developed for accessing and storing small files efficiently. Out of the various techniques we have specifically tried to implement the HDFS- HAR, NHAR techniques.

A Hot-Data Replication Scheme Based on Data Access Patterns for Enhancing Processing Speed of MapReduce (맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법)

  • Son, Ingook;Ryu, Eunkyung;Park, Junho;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.21-27
    • /
    • 2013
  • In recently years, with the growth of social media and the development of mobile devices, the data have been significantly increased. Hadoop has been widely utilized as a typical distributed storage and processing framework. The tasks in Mapreduce based on the Hadoop distributed file system are allocated to the map as close as possible by considering the data locality. However, there are data being requested frequently according to the data analysis tasks of Mapreduce. In this paper, we propose a hot-data replication mechanism to improve the processing speed of Mapreduce according to data access patterns. The proposed scheme reduces the task processing time and improves the data locality using the replica optimization algorithm on the high access frequency of hot data. It is shown through performance evaluation that the proposed scheme outperforms the existing scheme in terms of the load of access frequency.

ICT Utilization for Optimization of SME Decision Making (중소기업 의사결정 최적화를 위한 ICT 활용 방안)

  • Park, Ji-Young;Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.275-280
    • /
    • 2018
  • Companies are now rapidly entering the realm of the realtime economy named 'Now Economy'. 'Now Economy' features the measurement and assessment, accelerating speed of decision making about business. According to this, companies intend to change their disposition to be able to make quick and accurate decision by gathering informations rapidly and correctly, and then by processing that. Applications of ICT can be possible to change the new decision system of companies. In this thesis, the new decision system through amalgamations of BPMS, Mobile, Cloud Service, Hadoop, BI and AI is presented. It will be able to make decision quickly and accurately by collecting all information between the most efficiently managed process and formal and informal data inside company through this, and then by combining changes with situations outside company.

The Efficient Method of Parallel Genetic Algorithm using MapReduce of Big Data (빅 데이터의 MapReduce를 이용한 효율적인 병렬 유전자 알고리즘 기법)

  • Hong, Sung-Sam;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • Big Data is data of big size which is not processed, collected, stored, searched, analyzed by the existing database management system. The parallel genetic algorithm using the Hadoop for BigData technology is easily realized by implementing GA(Genetic Algorithm) using MapReduce in the Hadoop Distribution System. The previous study that the genetic algorithm using MapReduce is proposed suitable transforming for the GA by MapReduce. However, they did not show good performance because of frequently occurring data input and output. In this paper, we proposed the MRPGA(MapReduce Parallel Genetic Algorithm) using improvement Map and Reduce process and the parallel processing characteristic of MapReduce. The optimal solution can be found by using the topology, migration of parallel genetic algorithm and local search algorithm. The convergence speed of the proposal method is 1.5 times faster than that of the existing MapReduce SGA, and is the optimal solution can be found quickly by the number of sub-generation iteration. In addition, the MRPGA is able to improve the processing and analysis performance of Big Data technology.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

MRQUTER : A Parallel Qualitative Temporal Reasoner Using MapReduce Framework (MRQUTER: MapReduce 프레임워크를 이용한 병렬 정성 시간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.231-242
    • /
    • 2016
  • In order to meet rapid changes of Web information, it is necessary to extend the current Web technologies to represent both the valid time and location of each fact and knowledge, and reason their relationships. Until recently, many researches on qualitative temporal reasoning have been conducted in laboratory-scale, dealing with small knowledge bases. However, in this paper, we propose the design and implementation of a parallel qualitative temporal reasoner, MRQUTER, which can make reasoning over Web-scale large knowledge bases. This parallel temporal reasoner was built on a Hadoop cluster system using the MapReduce parallel programming framework. It decomposes the entire qualitative temporal reasoning process into several MapReduce jobs such as the encoding and decoding job, the inverse and equal reasoning job, the transitive reasoning job, the refining job, and applies some optimization techniques into each component reasoning job implemented with a pair of Map and Reduce functions. Through experiments using large benchmarking temporal knowledge bases, MRQUTER shows high reasoning performance and scalability.