• Title/Summary/Keyword: Hadoop File System

Search Result 89, Processing Time 0.023 seconds

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

Design and Implementation of Data Access Control in Hadoop (하둡에서 데이터 접근 제어 설계 및 구현)

  • Kim, Heeju;Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.700-703
    • /
    • 2014
  • 최근 이슈가 되고 있는 하둡(hadoop) 패키지에 접목하여 많은 프로젝트들이 생겨나고 있으며, 이들 중 주요하게 떠오르고 있는 분야가 접근 제어 기술이다. 특히, 인터넷의 발전과 스마트 기기 사용자가 늘어남에 따라 데이터의 양이 증가하여, 데이터의 소유자와 사용자의 필요에 의한 접근 제어 기술이 필요하게 되었다. 본 논문에서는 접근 제어 기술의 필요성을 기반으로 HDFS(Hadoop Distributed File System, 하둡 분산 파일 시스템) 기반의 새로운 데이터 접근 제어 프레임워크를 제안한다. 제안하는 방법은 새로운 메타데이터 저장 모듈과 접근 관리 모듈을 만들어 데이터 접근 제어프레임워크를 구성함으로써, 빅데이터 플랫폼을 사용하는 사용자들을 위한 접근 제어 기능을 제공한다. 제안한 프레임워크는 기존 플랫폼에 추가적인 설치가 필요 없도록 하둡 내부에 설계하여 향후 활용도가 높을 것이라 기대된다.

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

A Study on Efficient Building Energy Management System Based on Big Data

  • Chang, Young-Hyun;Ko, Chang-Bae
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2019
  • We aim to use public data different from the remote BEMS energy diagnostics technology and already established and then switch the conventional operation environment to a big-data-based integrated management environment to operate and build a building energy management environment of maximized efficiency. In Step 1, various network management environments of the system integrated with a big data platform and the BEMS management system are used to collect logs created in various types of data by means of the big data platform. In Step 2, the collected data are stored in the HDFS (Hadoop Distributed File System) to manage the data in real time about internal and external changes on the basis of integration analysis, for example, relations and interrelation for automatic efficient management.

Research of Soft-Interface Creation and Provision Methodology According to Applications Based on Mobile Device Environment (모바일 디바이스 환경에서 어플리케이션에 따른 소프트 인터페이스 제작 및 제공 방안 연구)

  • Cho, Changhee;Park, Sanghyun;Lee, Sang-Joon;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.513-519
    • /
    • 2013
  • In this paper, we provide interfaces according to user application environments and provide tools through web-site that users can create interface to apply a wide range of application environment. HTML5 is used in the creation processing, so users can create various interfaces by dragging mouse and apply it to multimedia, game applications as well as documents by using the ASCII code and key events that are provided in the Android OS. Database of interfaces is stored in HDFS (Hadoop Distributed File System) based on Hadoop for management and users can have their own designed interface or select interfaces through simple login any time. In order to provide interface quickly, HIVE based on Hadoop is used for search and the data is provided in XML file which smart mobile can process quickly.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

  • Srinivasan, Kathiravan;Chang, Chuan-Yu;Huang, Chao-Hsi;Chang, Min-Hao;Sharma, Anant;Ankur, Avinash
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.989-1009
    • /
    • 2018
  • Rapid advances in science and technology with exponential development of smart mobile devices, workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years. The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the generation of an enormous amount of data, now termed 'big data'. Given this scenario, storage of data on local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At present, there are several cloud computing service providers available to resolve the big data issues. This paper establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the regular data centers require large amounts of energy for operation, they also need cooling equipment and occupy prime real estate. However, this energy consumption scenario and the physical space constraints can be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power, high-speed solution along with micro-data center support for big data. Hadoop provides the required modules for the distributed processing of big data by deploying map-reduce programming approaches. In this work, the performance of SBC clusters and a single computer were compared. It can be observed from the experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%. Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS), which offers more flexibility and greater scalability than a single computer system.

A Study on Phon Call Big Data Analytics (전화통화 빅데이터 분석에 관한 연구)

  • Kim, Jeongrae;Jeong, Chanki
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.387-397
    • /
    • 2013
  • This paper proposes an approach to big data analytics for phon call data. The analytical models for phon call data is composed of the PVPF (Parallel Variable-length Phrase Finding) algorithm for identifying verbal phrases of natural language and the word count algorithm for measuring the usage frequency of keywords. In the proposed model, we identify words using the PVPF algorithm, and measure the usage frequency of the identified words using word count algorithm in MapReduce. The results can be interpreted from various viewpoints. We design and implement the model based HDFS (Hadoop Distributed File System), verify the proposed approach through a case study of phon call data. So we extract useful results through analysis of keyword correlation and usage frequency.

A Design of Permission Management System Based on Group Key in Hadoop Distributed File System (하둡 분산 파일 시스템에서 그룹키 기반 Permission Management 시스템 설계)

  • Kim, Hyungjoo;Kang, Jungho;You, Hanna;Jun, Moonseog
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.4
    • /
    • pp.141-146
    • /
    • 2015
  • Data have been increased enormously due to the development of IT technology such as recent smart equipments, social network services and streaming services. To meet these environments the technologies that can treat mass data have received attention, and the typical one is Hadoop. Hadoop is on the basis of open source, and it has been designed to be used at general purpose computers on the basis of Linux. To initial Hadoop nearly no security was introduced, but as the number of users increased data that need security increased and there appeared new version that introduced Kerberos and Token system in 2009. But in this method there was a problem that only one secret key can be used and access permission to blocks cannot be authenticated to each user, and there were weak points that replay attack and spoofing attack were possible. Hence, to supplement these weak points and to maintain efficiency a protocol on the basis of group key, in which users are authenticated in logical group and then this is reflected to token, is proposed in this paper. The result shows that it has solved the weak points and there is no big overhead in terms of efficiency.

Design and Implementation of Big Data Cluster for Indoor Environment Monitering (실내 환경 모니터링을 위한 빅데이터 클러스터 설계 및 구현)

  • Jeon, Byoungchan;Go, Mingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Due to the expansion of accommodation space caused by increase of population along with lifestyle changes, most of people spend their time indoor except for the travel time. Because of this, environmental change of indoor is very important, and it affects people's health and economy in resources. But, most of people don't acknowledge the importance of indoor environment. Thus, monitoring system for sustaining and managing indoor environment systematically is needed, and big data clusters should be used in order to save and manage numerous sensor data collected from many spaces. In this paper, we design a big data cluster for the indoor environment monitoring in order to store the sensor data and monitor unit of the huge building Implementation design big data cluster-based system for the analysis, and a distributed file system and building a Hadoop, HBase for big data processing. Also, various sensor data is saved for collection, and effective indoor environment management and health enhancement through monitoring is expected.

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.