• 제목/요약/키워드: Hadamard spaces

검색결과 13건 처리시간 0.018초

TUBES IN SINGULAR SPACES OF NONPOSITIVE CURVATURE

  • Chai, Young-Do;Lee, Doo-Hann
    • 대한수학회지
    • /
    • 제43권5호
    • /
    • pp.1129-1142
    • /
    • 2006
  • In this paper, we estimate area of tube in a CBA(0)-space with extendible geodesics. As its application, we obtain an upper bound of systole in a nonsimply connected space of nonpositive curvature. Also, we determine a relative growth of a ball in a CBA(0)-space to the corresponding ball in Euclidean plane.

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.457-467
    • /
    • 2011
  • In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.

COMPACTNESS AND DIRICHLET'S PRINCIPLE

  • Seo, Jin Keun;Zorgati, Hamdi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.193-207
    • /
    • 2014
  • In this paper we explore the emergence of the notion of compactness within its historical beginning through rigor versus intuition modes in the treatment of Dirichlet's principle. We emphasize on the intuition in Riemann's statement on the principle criticized by Weierstrass' requirement of rigor followed by Hilbert's restatement again criticized by Hadamard, which pushed the ascension of the notion of compactness in the analysis of PDEs. A brief overview of some techniques and problems involving compactness is presented illustrating the importance of this notion. Compactness is discussed here to raise educational issues regarding rigor vs intuition in mathematical studies. The concept of compactness advanced rapidly after Weierstrass's famous criticism of Riemann's use of the Dirichlet principle. The rigor of Weierstrass contributed to establishment of the concept of compactness, but such a focus on rigor blinded mathematicians to big pictures. Fortunately, Poincar$\acute{e}$ and Hilbert defended Riemann's use of the Dirichlet principle and found a balance between rigor and intuition. There is no theorem without rigor, but we should not be a slave of rigor. Rigor (highly detailed examination with toy models) and intuition (broader view with real models) are essentially complementary to each other.