• Title/Summary/Keyword: Hadamard spaces

Search Result 13, Processing Time 0.024 seconds

Some Results on Generalized Asymptotically Nonexpansive Mappings in p-Hadamard Spaces

  • Kaewta Juanak;Aree Varatechakongka;Withun Phuengrattana
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.451-461
    • /
    • 2023
  • In this paper, we study the fixed point property for generalized asymptotically nonexpansive mappings in the setting of p-Hadamard spaces, with p ≥ 2. We prove the strong convergence of the sequence generated by the modified two-step iterative sequence for finding a fixed point of a generalized asymptotically nonexpansive mapping in p-Hadamard spaces.

SOME GENERALIZATIONS OF THE FEJ$\'{E}$R AND HERMITE-HADAMARD INEQUALITIES IN H$\"{o}$LDER SPACES

  • Huy, Vu Nhat;Chung, Nguyen Thanh
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.859-868
    • /
    • 2011
  • In this article, by considering error inequalities, we propose a new way to treat the Fej$\'{e}$r and Hermite-Hadamard inequalities involving n knots and m-th derivative on H$\"{o}$lder spaces. Moreover, some new related estimations are also given.

CONVEXITY OF DISTANCE FUNCTION BETWEEN GEODESICS

  • Kim, In-Su;Kim, Yong-Il;Lee, Doo-Hann
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.335-341
    • /
    • 2008
  • In this paper, we use the convexity of distance function between geodesics in a singular Hadamard space to generalize Hadamard-Cartan theorem for 2-dimensional metric spaces. We also determine a neighborhood of a closed geodesic where no other closed geodesic exists in a complete space of nonpositive curvature.

STRONG AND ∆-CONVERGENCE THEOREMS FOR A COUNTABLE FAMILY OF MULTI-VALUED DEMICONTRACTIVE MAPS IN HADAMARD SPACES

  • Minjibir, Ma'aruf Shehu;Salisu, Sani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.45-58
    • /
    • 2022
  • In this paper, iterative algorithms for approximating a common fixed point of a countable family of multi-valued demicontractive maps in the setting of Hadamard spaces are presented. Under different mild conditions, the sequences generated are shown to strongly convergent and ∆-convergent to a common fixed point of the considered family, accordingly. Our theorems complement many results in the literature.

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

PARALLEL SHRINKING PROJECTION METHOD FOR FIXED POINT AND GENERALIZED EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLD

  • Hammed Anuoluwapo Abass;Olawale Kazeem Oyewole
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.421-436
    • /
    • 2024
  • In this article, we propose a shrinking projection algorithm for solving a finite family of generalized equilibrium problem which is also a fixed point of a nonexpansive mapping in the setting of Hadamard manifolds. Under some mild conditions, we prove that the sequence generated by the proposed algorithm converges to a common solution of a finite family of generalized equilibrium problem and fixed point problem of a nonexpansive mapping. Lastly, we present some numerical examples to illustrate the performance of our iterative method. Our results extends and improve many related results on generalized equilibrium problem from linear spaces to Hadamard manifolds. The result discuss in this article extends and complements many related results in the literature.

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.