• Title/Summary/Keyword: HaCaT human keratinocyte cells

Search Result 135, Processing Time 0.03 seconds

Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides

  • Kim, Nam Young;Yim, Tae Bin;Lee, Hyeon Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1589-1598
    • /
    • 2015
  • In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophyll-a-induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

The Effects of Rhus Extracts on The Cytotoxicity on Cancer Cells and E6 and E7 Oncogenes of Human Papillomavirus Type 16 (옻 추출물의 세포독성 및 자궁 경부암 바이러스 암 유발인자 E6 와 E7의 작용에 미치는 효과)

  • Cho, Young-Sik;Joung, Ok;Cho, Cheong-Weon;Lee, Kyung-Ae;Shim, Jung-Hyun;Kim, Kwang-Soo;Lee, Hong-Soo;Seung, Ki-Seung;Yoon, Do-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1389-1395
    • /
    • 2000
  • Cervical cancer has been one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papillomaviruses (HPV types 16 and 18) and cervical cancer has been well known. An extract of natural products, Rhus, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. This Rhus inhibited the proliferation of human cervical cancer cell lines (C-33A, SiHa, Caski) and HaCaT keratinocytes in a dose response manner. In vitro binding assay and ELISA showed that Rhus inhibited the in vitro binding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, Rhus inhibited the in vitro binding of E7 and Rb which essential tumor suppressor for the control of cell cycle. The level of mRNA for E6 was also decreased by Rhus while that of E7 mRNA was not changed. Our data suggested that Rhus inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus can be used as a putative anti-HPV agent for the treatment of cervical carcinomas by HPV.

  • PDF

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Combining Ginsenoside F1 with (-)-Epigallocatechin Gallate Synergistically Protects Human HaCaT Keratinocytes from Ultraviolet B-Induced Apoptosis (Ginsenosdie F1과 EGCG의 상승작용에 의한 자외선조사에 의한 세포 사멸 방지)

  • Tae Ryong, Lee;Si Young, Cho;Eun Hee, Lee;Myeong Hoon, Yeom;Ih-Seop, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.253-261
    • /
    • 2004
  • Ginsenosides and green tea extracts show a variety of biomedical efficacies such as anti-aging, anti-oxidation and anti-tumor-promotion effects. (-)-Epigallocatechin-3-gallate (EGCG) has been reported to inhibit the UVB-induced apoptosis by increasing the Bcl-2-to-Bax ratio. We have previously shown that ginsenoside Fl protects human HaCaT cells from ultraviolet-B (UVB)-induced apoptosis by maintaining constant levels of Bcl-2 and Brn-3a. Here, we investigate the combined effect of ginsenoside Fl and EGCG on the protection of human HaCaT keratinocyte against UVB-induced apoptosis. When treated individually, although 5 ${\mu}$M ginsenoside Fl and 50${\mu}$M EGCG protected cells from UVB-induced apoptosis, 2${\mu}$M ginsenoside Fl or 10${\mu}$M EGCG treatment showed very little protection effect. However, cotreatement of 2${\mu}$M ginsenoside Fl and 10${\mu}$M EGCG successfully protected HaCaT cells from UVB-induced cell death. As expected, combining ginsenoside Fl and EGCG efficiently prevented UVB-induced decrease of Bcl-2 and Brn-3a expression. In addition, cotreatment with ginsenoside F1 and EGCG prevented the dephosphorylation of Rb, whereas individual treatment with ginsenoside Fl or EGCG failed to prevent the dephosphorylation of Rb even at high concentrations.

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes

  • Kang, Na-Jin;Koo, Dong-Hwan;Kang, Gyeoung-Jin;Han, Sang-Chul;Lee, Bang-Won;Koh, Young-Sang;Hyun, Jin-Won;Lee, Nam-Ho;Ko, Mi-Hee;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.238-244
    • /
    • 2015
  • Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are elevated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflammatory lymphocytes to the skin. A major signaling pathway in the interferon-${\gamma}$ (IFN-${\gamma}$)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-${\gamma}$ (10 ng/mL) in a dose dependent manner. Dieckol (5 and $10{\mu}M$) suppressed the phosphorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation.

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim;Nur Istianah;Bo Ram So;Hye Jee Kang;Min Jeong Woo;Su Jin Park;Hyun Jeong Kim;Young Hoon Jung;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1589-1598
    • /
    • 2022
  • Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Emodin Studies on Anti-inflammatory and Skin Barrier Improvement Activities (Emodin의 항염 및 피부장벽개선 활성 연구)

  • Kim, Se-Gie;Choi, Jae Gurn;Jang, Young-Ah
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1383-1392
    • /
    • 2021
  • It has been reported that emodin, a major pharmacologically active ingredient of herbal medicines such as Polygonum cuspidatum, Polygonum multiflorum, Rheum palmatum, and Aloe vera, is effective in antioxidant, antibacterial, anti-inflammatory, anticancer, and liver protection. In this study, to investigate the potential of emodin to be used as a skin disease and functional material, the activity related to the improvement of inflammation and skin barrier function was confirmed. To observe the anti-inflammatory effect on HaCaT cells, which are human keratinocytes, cytokine inhibition was confirmed by ELISA kit and protein expression by western blot. In HaCaT cells activated with TNF-α (10 ng/mL)/IFN-γ (10 ng/mL), emodin was treated with each concentration (5, 10, 20, 40) µM. As a result, It was confirmed that the production amount of TNF-α, IL-1β and IL-6 decreased as the concentration of emodin increased. In the experimental results on the expression levels of inflammation-related proteins iNOS and COX-2, it was confirmed that 48% of iNOS and 29% of COX-2 were inhibited compared to control at a concentration of 20 µM of emodin. As an indicator of skin barrier function improvement, the mRNA expression level of filaggrin, involucrin, and loricirn and the production amount of filaggrin, involucrin, and loricirn were confirmed. and excellent results were obtained with an emodin concentration-dependent increase. In particular, filaggrin, which was produced twice as much as the control at a concentration of 20 µM, is a protein involved in the formation of NMF, a natural moisturizing factor, and is known to play an important role in moisturizing the stratum corneum. In conclusion, it was confirmed that emodin can be used as a material for improving inflammation and improving skin barrier function, which is part of the potential for use as a skin disease and functional material. It is believed that if additional research is performed in the future, the scope of its application can be further expanded.

Baicalein Attenuates Oxidative Stress-Induced Expression of Matrix Metalloproteinase-1 by Regulating the ERK/JNK/AP-1 Pathway in Human Keratinocytes

  • Kim, Ki-Cheon;Kang, Sam-Sik;Lee, Jong-Sung;Park, Deok-Hoon;Hyun, Jin-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family is involved in the breakdown of the extracellular matrix during normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as pathological aging, arthritis, and metastasis. Oxidative conditions generate reactive oxygen species (ROS) (e.g., hydrogen peroxide [$H_2O_2$]) in cells, which subsequently induce the synthesis of matrix metalloproteinase-1 (MMP-1). MMP-1, an interstitial collagenase, in turn stimulates an aging phenomenon. In this study, baicalein (5,6,7-trihydroxyfl avone) was investigated for its in vitro activity against $H_2O_2$-induced damage using a human skin keratinocyte model. Baicalein pretreatment signifi cantly inhibited $H_2O_2$-induced up-regulation of MMP-1 mRNA, MMP-1 protein expression and MMP-1 activity in cultured HaCaT keratinocytes. In addition, baicalein decreased the transcriptional activity of activator protein-1 (AP-1) and the expression of c-Fos and c-Jun, both components of the heterodimeric AP-1 transcription factor. Furthermore, baicalein reduced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK), which are upstream of the AP-1 transcription factor. The results of this study suggest that baicalein is involved in the inhibition of oxidative stress-induced expression of MMP-1 via inactivation of the ERK/JNK/AP-1 signaling pathway.

Influence of Essential Oil in 'Shiranuhi' Immature Fruit on Antioxidant and Antimicrobial Activities (부지화 미숙과 에센셜 오일의 항산화 및 항균 활성 효과)

  • Kim, Sang Suk;Hyun, Ju Mi;Kim, Kwang Sik;Park, Kyung Jin;Park, Suk Man;Choi, Young Hun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.493-497
    • /
    • 2013
  • This study was designed to analyze the chemical composition of essential oil in 'Shiranuhi' immature fruit and to test their biological activities. 'Shiranuhi' immature essential oils (SIEO) were obtained by steam distillation from fruits collected from Jeju Island and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Fourteen components were identified in the essential oil. Limonene (75.21%) and terpineol (8.68%) were the major components in SIEO. Since acne vulgaris is the combined result of a bacterial infection and the inflammatory response to that infection, we examined whether SIEO possessed antibacterial against skin pathogens. As a result, SIEO showed excellent antibacterial activities against drug-susceptible and -resistant Propionibacterium acnes and Staphylococcus epidermidis, which are acne-causing bacteria. In this study, SIEO was examined on DPPH radical scavenging activities, which showed moderate antioxidant activity ($SC_{50}$, $15.36{\mu}L/mL$). In order to determined whether SIEO can be safely applied to human skin, the cytotoxicity effects of SIEO were determined by colorimetric MTT assays in normal human fibroblasts and keratinocyte HaCaT cells. They exhibited low cytotoxicity at $0.5{\mu}L/mL$ in both celllines. Based on these results, we suggest the possibility that essential oil of 'Shiranuhi' maybe considered as an antibacterial and antioxidant agent.