• Title/Summary/Keyword: Ha39

Search Result 1,562, Processing Time 0.036 seconds

Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

  • Abdel-Monaim, Montaser Fawzy;Ismail, Mamdoh Ewis;Morsy, Kadry Mohamed
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.290-298
    • /
    • 2011
  • The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars.

Interactions between Hyaluronic Acid, Lysozyme, Peroxidase, and Glucose Oxidase in Enzymatic Activities at Low pH

  • Kim, Bum-Soo;Kim, Yoon-Young;Chang, Ji-Youn;Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.39 no.4
    • /
    • pp.127-132
    • /
    • 2014
  • Purpose: Many substances in saliva or oral health care products interact with each other. The aim of this study was to investigate interactions between hyaluronic acid (HA), lysozyme, peroxidase, and glucose oxidase (GO) in enzymatic activities at low pH levels. Methods: HA (0.5 mg/mL), hen egg-white lysozyme (HEWL, $30{\mu}g/mL$), bovine lactoperoxidase (bLPO, $25{\mu}g/mL$), and GO ($50{\mu}g/mL$) were used. The influences of HA, bLPO, and GO on HEWL activity were determined by measuring the turbidity of a Micrococcus lysodeikticus suspension. The influences of HA and HEWL on bLPO activity were determined by the NbsSCN assay, measuring the rate of oxidation of 5-thio-2-nitrobenzoic acid (Nbs) to 5,5'-dithiobis(2-nitrobenzoic acid) $(Nbs)_2$. The influences of HA and HEWL on GO activity were determined by measuring oxidized o-dianisidine production. All experiments were performed at pH 4, 5, and 6. Results: HA and GO did not affect the enzymatic activity of HEWL at pH 4, 5, and 6. bLPO enhanced the enzymatic activity of HEWL at pH 5 (p<0.05) and pH 6 (p<0.05) significantly. The enzymatic activity of bLPO was not affected by HA and HEWL at pH 4, 5, and 6. HA and HEWL did not affect the enzymatic activity of the GO at pH 4, 5, and 6. Conclusions: Peroxidase enhances lysozyme activity at low pH, otherwise there were no significant interactions in enzymatic activities between HA, lysozyme, peroxidase, and GO at low pH levels.

Thinning Intensity Effects on Carbon Storage of Soil, Forest Floor and Coarse Woody Debris in Pinus densiflora Stands (간벌 강도가 소나무림의 토양, 낙엽층 및 고사목 탄소 저장량에 미치는 영향)

  • Ko, Suin;Yoon, Tae Kyung;Kim, Seongjun;Kim, Choonsig;Lee, Sang-Tae;Seo, Kyung Won;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • This study examined the change in carbon (C) storage of soil, forest floor and coarse woody debris (CWD) for different thinning intensities in Pinus densiflora stands 4 years after the treatment. Two study stands were located in Jeongseon (Stand 1) and Gwangneung Experiment Forest (Stand 2). Three plots for different thinning intensities based on stand density were established at each stand in 2008; control plot (0%), T20 plot (20%) and T30 plot (30%) in Stand 1 and control plot (0%), T39 plot (39%) and T74 plot (74%) in Stand 2, respectively. The C storage of soil (0-50 cm), forest floor and CWD was measured in 2012. Total C storage of T30 plot ($109.80t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($86.69t{\cdot}C{\cdot}ha^{-1}$) in Stand 1. In stand 2, total C storage of T74 plot ($97.02t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($72.04t{\cdot}C{\cdot}ha^{-1}$) and T39 plot ($63.25t{\cdot}C{\cdot}ha^{-1}$). Total C storage of the heaviest thinned plot was the highest in each study stand. Since this study examined initial effects of thinning on C storage of soil, forest floor and CWD, further studies would be necessary to evaluate the long-term effects.

Pollutants Unit Loadings of the Stormwater Runoff in Industrial Complex (강우시 산업단지에서의 유출오염부하량 원단위 산정)

  • Lee, Jun-Ho;Bang, Ki-Woong;Choi, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.355-362
    • /
    • 2000
  • The objective of this paper is to estimate the pollutant load based on event mear concentrations(EMC) in industrial complex. Eight sub-basins in the Chongju industrial complex were selected for sampling and study with different characteristics during the period from June 1997 to August 1998. During the storm events, measured EMC ranges of $BOD_5$, COD, SS, TKN, TP, HEM, $NO_3-N$, $PO_4-P$, Cr, Pb, Cu and Fe in the industrial complex watersheds were 11~176mg/L, 40~502mg/L, 23~633mg/L, 104~20.9mg/L, 0.22~7.51mg/L, 12.7~548.7mg/L, 0.06~2.66mg/L, 0.12~3.39mg/L, 0.01~0.50mg/L. 0.02~0.42mg/L, 0.01~0.15mg/L and 1.29~11.51mg/L respectively. And the calculated annual average pollutant unit loadings of $BOD_5$ COD, SS, TKN, $NO_3-N$, $PO_4-P$, TP, HEM, Cr, Pb, Cu and Fe were 374.4kg/ha/yr 924.1kg/ha/yr, 983.6kg/ha/yr, 48.8kg/ha/yr, 8.1kg/ha/yr, 9.7kg/ha/yr, 17.8kg/ha/yr 943.0kg/ha/yr, 0.7kg/ha/yr, 0.9kg/ha/yr, 0.3kg/ha/yr and 28.9kg/ha/yr, respectively.

  • PDF

Reducing Technique for Nitrogen and Phosphorus in Piggery Slurry by the Thermophilic Aerobic Oxidation(TAO) System (급속액상부숙기술(TAO system)을 이용한 가축분뇨 슬러리의 질소.인 저감기술)

  • 이원일;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.185-190
    • /
    • 2000
  • TAO system and solid-liquid separation (28mesh filter and 200mesh filter) were applied in processing piggery slurry to see the reduction of N and P and to draw the efficiency in reducing manure application area. The results are as follows; 1. The amount of N and P in slurry of $4.6m^3/day$ was 22.5kg/day ($4,893mg/{\ell}$) and 7.32kg/day ($1,592mg/{\ell}$). 2. Reduction rate of N and P by TAO reactor was 9.9 kg/day (46.0%) and 3.47kg/day(34.0%). 3. Reduction rate of N and P by Solid-liquid separation was 10.5kg/day (46.6%) and 5.12kg/day (69.8%). 4. One the basis of the amount of nitrogen composting, the square size of liquid manure sprinkled area was reduced from 74.6ha/y to 39.0ha/y in rice paddy, and from 63.2ha/y to 33.0ha/y by the treatment.

  • PDF

Effect of Ferulic Acid Isolated from Cnidium Officinale on the Synthesis of Hyaluronic Acid (천궁으로부터 분리된 ferulic acid의 히알루론산 생성에 미치는 효과)

  • Song, Hye Jin;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.281-288
    • /
    • 2013
  • Hyaluronic acid (HA) is one of the major extracellular matrix components in skin. The HA content is reported to decline with age, which may contribute to decrease in skin moisture, wrinkle formation and the decrease in elasticity of the skin. Among the family of HA synthase genes (HAS-1, 2, 3) identified so far, HAS-2 plays crucial roles in the regulation of HA synthesis in human skin fibroblasts. In this study, we elucidated the effects of ferulic acid isolated from Cnidium officinale on HA production. Semi-quantitative RT-PCR and quantitative real-time PCR showed that ferulic acid increased mRNA level of HAS-2 gene and ELISA assay also revealed that ferulic acid increased HA production in human skin fibroblasts. Our study suggests that ferulic acid might prevent age-dependent skin deteriorations such as wrinkles, dryness and elasticity decrease, all of which could be ascribed to the reduction of the HA content in human skin.