• Title/Summary/Keyword: HYDROLYSIS

Search Result 3,730, Processing Time 0.026 seconds

Alteration of Phospholipase D Activity in the Rat Tissues by Irradiation (방사선 조사에 의한 쥐 조직의 포스포리파제 D의 활성 변화)

  • Choi Myung Sun;Cho Yang Ja;Choi Myung-Un
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1997
  • Purpose : Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer Process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. Materials and Methods : The reaction mixture for the PLD assay contained $0.1\;\muCi\;1,2-di[1-^{14}C]palmitoyl$ phosphatidylcholine 0.5mM phosphatidylcholine, 5mM sodium oleate, $0.2\%$ taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM $CaCl_2$, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cmx loom and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Results : Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward $\gamma-rar$ with more than two times amplification in their activities In contrast, the PLD activity of bone marrow appears to be reduced to nearly $30\%$. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. Conclusion : The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation s1ron91y indicates that the PLD is closely related to the physiological function of these organs, Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell Proliferation to cell death on these organs.

  • PDF

Analytical Method for MCPA Residue in Brown Rice and Rice Straw by HPLC/UVD (HPLC/UVD를 이용한 현미와 볏짚 중 MCPA의 잔류분석방법 확립)

  • Yoo, Ki-Yong;Kang, Dae-Won;Choi, Yong-Hwa;Han, Seong-Soo
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.361-370
    • /
    • 2010
  • This study was carried out to establish the analytical method of MCPA residue in brown rice and rice straw by HPLC/UVD. When MCPA was extracted from sample under the pH 3.6 by adding acetone 200 mL and 1N-HCl 100 mL, the extraction efficiency was high by 87%. And purification efficiency was high by 83% when 5 mL of 1% methanol/acetonitrile was eluated by the florisil Sep-pak cartridge column. From spiking of $0.1{\mu}g\;mL^{-1}$ and $0.25{\mu}g\;mL^{-1}$ of MCPA to control sample, respectively, average recovery rate of MCPA in brown rice was 96.0% and 94.9% and that in rice straw was 92.5% and 88.2%, respectively. Precision of experiment was very high by relative standard deviation of 1.5% to 5.7%. In brown rice and rice straw treated with bentazone+MCPA (11+1.2%) of 30 kg and 60 kg per ha at 30 days after rice transplanting, respectively, maximum residue limit was under $0.05{\mu}g\;mL^{-1}$ of the recommended rate of Korean Food and Drug Administration. From the above results, the analytical procedure of MCPA in plants such as hydrolysis, saponification and derivatization were ommited, and retention time was faster and recovery rate was higher than the existed results of HPLC/UVD. Therefore, these results were greatly improved and seemed to be usefully applied for residue analysis of MCPA in plants.

Fermentation Properties of the Mixed Yogurt Prepared with Bovine Milk and Soybean Milk (우유와 두유를 혼합한 요구르트의 발효 특성)

  • Bae, Hyoung-Churl;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.25 no.4
    • /
    • pp.483-493
    • /
    • 2005
  • This experiment was carried out to examine the fermentation properties of yogurt prepared with bovine milk and soybean milk at the mixed ratios of 3:1, 2:1, 1:1, 1:2 and 1:3. The effect of bovine milk and soybean milk on promoting the fermentation was higher un pH was $3.75\~4.16$ when Lactobacillus salivarius ssp. salivarius CNU27, lactic culture 1(Lactobacillus delbrueckii ssp. bulgaricus(LB12)), Streptococcus salivarius ssp. thermophilus (ST36) and Lactobacillus acidophilus KCTC3150 were used. Titratable acidity was the highest when lactic culture 1[Lactobacillus delbrueckii ssp. bulgaricus(LB12), Streptococcus salivarius ssp. thermophilus(ST36)] was mea and the mixed ratio of bovine milk and soybean milk was 2:1. The average viable counts of lactic acid bacteria was the highest level of $2.17\times10^9$ cfu/ml when Lactobacillus salivarius ssp. salivarius CNU27 was used, and the mixed ratio of bovine milk and soybean milk was 1:3. the highest lactic acid production was 412.52mM when lactic culture 1[Lactobacillus delbrueckii ssp. bulgaricus (LB12), Streptococcus salivarius ssp. thermophilus (ST36)] was used, and the mixed ratio of bovine milk and soybean milk was 1:1. The production of acetic acid was the highest and the concentration was 394.01mM when lactic culture 2(Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus salivarius ssp. thermophilus) was used and the mixed ratio of bovine milk and soy bean milk was 3:1. Tn the carbohydrate hydrolysis, stachyose was hydrolyzed $53.92\%$ as compared with the control when Lactobacillus salivarius subsp salivarius CNU27 was used, and the mixed ratio of bovine milk and soy bean milk was 1:3. The highest viscosity of yogurt was $1,300\~1,660$ cP when the mixed ratio of bovine milk and soybean milk was 1:3. The overall acceptability, $4.17\pm0.69$, was the highest when Lactobacillus acidophilus KCTC3150 was used and when the mixed ratio of bovine milk and soybean milk was 2:1.

Processing of Sardine Sauce from Sardine Scrap (정어리잔사를 이용한 정어리간장의 제조)

  • LEE Eung-Ho;CHO Soon-Yeong;HA Jae-Ho;OH Kwang-Soo;KIM Chang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 1984
  • Sarine scrap usually comprises about $40\%$ of the raw fish in processing. The purpose of this study is to establish the desirable methods for proteinaceous materials from the sardine scrap through autolysis or enzymatic digestion and to convert them into useful by-products such as sardine sauce. Sardine scrap was chopped and mixed with equal weight of water, and be hydrolyzed them by autolysis and/or by addition of commercial proteolytic enzyme and various concentrations of sodium chloride. The optimal conditions for hydrolysis of sardine scrap were revealed in temperature at $55^{\circ}C$ and 4 hours digestion with bromelain($0.4\%$) and commercial complex enzyme ($6.0\%$), and those conditions were also applicated in autolysis. The maximum hydrolyzing rate of protein and released amino nitrogen were $82.5\%,\;5.2\%$ through autolysis, $84.3\%,\;5.8\%$ by bromelain digestion and $92.5\%,\;5.9\%$ by complex enzyme, respectively. In the products prepared from sardine scrap through autolysis or bromelain digestion, hypoxanthine was dominant, as $17.4 {\mu}mole/g$, dry matter for autolysis and $16.0 {\mu}mole/g$, dry matter, for bromelain digestion among the nucleotidcs and their related compounds, respectively. The abundant free amino acids were leucine, glutamic acid, lysnie, valine and alanine. The contents of those amino acids were $51.3\%,\;48.3\%$ of the total free amino acids, respectively. And the contents of 5'-IMP and TMAO were negligible but total creatinine was developed in value from $9.2\%\;to\;10\%$ of total extracted nitrogen. The flavor of sardine sauce prepared from sardine scrap by autolysis or enzyme digestion were not inferior to that of traditional Korean soy sauce by sensory evaluation.

  • PDF

A Study on The Content of Liver Protein, Nucleic Acids, and Guanine Deaminase Activity of Mouse During Acute Starvation (급성(急性) 기아(饑餓)마우스의 간단백질(肝蛋白質), 핵산(核酸) 및 Guanine Deaminase 활성(活性)에 관(關)한 연구(硏究))

  • Park, Seung-Hee;Kim, Seung-Won
    • Journal of Nutrition and Health
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1968
  • Number of aspects, not only nutritional but social as well as political involved in human starvation pose nowadays global problems. In order to help establish the minimum nutritional requirements in the daily life of a man and to free people as well from either undernourishment, malnutrition or even starvation many workers have devoted themselves so far on the research programs to know what and how number of metabolic events take place in animals in vivo. It is the purpose of the present paper to examine in effect to what extent both of the protein and nucleic acids (DNA & RNA) together with an enzyme, guanine deaminase, which converts guanine into xanthine and in turn ends up to uric acid as an end product, undergo changes, quantitatively during acute starvation, using the mouse as an experimental animal. The mouse was strictly inhibited from taking foods except drinking water ad libitum and was sacriflced 24, 48, and 72 hours following starvation thus acutely induced. The animals consisted of two experimental groups, one control and another starvation groups, each being consisted of 6-24 mice of whose body weights ranged in the vicinity of 10 g. The animals were sacriflced by a blow on the head, followed by immediate excision of their livers into ice-cold distilled water, washing adherent blood and other contaminant tissues. The liver was minced foramin, by an all-glass homogenizer immersing it in an ice-bath, followed by subsequent fractionatin of the homogenate (10% W/V in 0.25M sucrose solution made up with 0.05M phosphate buffer of pH 7.4). For the liver protein and guanine deaminase assay, the 10% homogenate was centrifuged at 600 x g for 10 minutes to eliminate the nuclear fraction; and for the estimation of DNA and RNA, the homogenate was prepared by the addition of 10% trichloroacetic acid in order to free the homogenate from the acid-soluble fraction, the remaining residue being delipidate by the addition of alcohol and dried in vacuo for later KOH (IN) hydrolysis. The changes in body and liver wegihts during acute starvation were checked gravimetrically. Protein contents in the liver were monitored by the method of Lowry et al; and guanine deaminase activities were followed by the assay of liberated ammonia from the substrate utilizing the Caraway's colorimetry. The extraction of both DNA and RNA was performed by the Schmidt-Thannhauser's method, which was followed by Marmur's method of purification for DNA and by Chargaff's method of purification for RNA. The determinations of both DNA and RNA were carried out by the diphenylamine reaction for the former and by the orcinol reaction for the latter. The following resume was the results of the present work. 1. It was observed that the body as well as liver weights fall abruptly during starvation, and that the loss of body weight showed no statistical correlation with the decreases in the content of liver protein. 2. The content of liver protein and activity of liver guanine deaminase activity as well decline dramatically, and the specific activities of the enzyme (activity/protein), however, decreased gradually as starvation proceeded. 3. Both of the nucleic acids, DNA and RNA, showed decrements in the liver of mouse during acute starvation; the latter, however, being more striking in the decline as compared to the former. 4. The decreases in the liver protein content as resulted from the acute starvation had no statistically significant correlation with the decrements of DNA in the same tissue, but had regressed with a significant statistical correlation with the fall of RNA in the tissue. 5. The decrease in the activity of guanine deaminase in the liver of mouse during acute starvation was functionally more proportional to the decrease in RNA than DNA, and moreover correlated with the changes in the content of the liver protein. 6. The possible mechanisms involved during in this acute starvation as bring the decreases in the contents of DNA, protein, and guanine deaminase were discussed briefly.

  • PDF

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

Effect of Biomass-derived Inhibitors on Ethanol Production (바이오매스 유래의 저해물질이 에탄올 생산에 미치는 영향)

  • Lee, Myung-Gu;Cho, Dae-Haeng;Kim, Yong-Hwan;Lee, Jin-Won;Lee, Jong-Ho;Kim, Seung-Wook;Cho, Jae-Hoon;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.439-445
    • /
    • 2009
  • The process for ethanol production requires lignocellulosic biomass to be hydrolyzed to generate monomeric sugars for the fermentation. During hydrolysis step, a monomeric sugars and a broad range of inhibitory compounds (furan derivatives, weak acids, phenolics) are formed and released. In this study, we investigated the effects of inhibitory compounds on the fermentative performance of Saccharomyces cerevisiae K35 and Pichia stipitis KCCM 12009 in ethanol production, two yeast strains were fermented in the synthetic medium including six inhibitory compounds such as 5-hydroxymethylfurfura (5-HMF), furfural, acetic acid, syringaldehyde, vanillic acid and syringic acid. Ethanol of over 40 g/L was produced by two yeast strains in the absence of inhibitory compounds, respectively. Most inhibitory compounds except acetic acid had a little effect on the ethanol production, but acetic acid showed high inhibition effect on the cell growth and ethanol production.

Cellulosic Ethanol Production (셀룰로식 (Cellulosic) 에탄올 생산)

  • Chung, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The world demand of ethanol as an alternative fuel for gasoline is increasing rapidly because of high oil price and global climate change. Most of ethanol is currently produced from corn grain or sugars in sugarcane and sugar beet. Because these sources compete with foods and animal feed and are not expected to be enough for future demand of ethanol. Thus, cellulosic ethanol from agricultural residues or wood has to be commercialized in near future. Typical cellulosic ethanol production consists of pretreatment, enzyme hydrolysis, fermentation and product separation. This paper reviews the principles and status of each step and discusses issues for cellulosic ethanol production.

Processings of Flavoring Substances from tow-Utilized Shellfishes (연안산 저활용 패류를 이용한 풍미소재의 개발)

  • OH Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.791-798
    • /
    • 1998
  • To develop natural flavoring substances. optimal hydrolysis conditions for two stage enzyme hydrolysates (TSEH) using low-utilized shellfishes such as purplish clam and frozen oyster stored at $-20^{\circ}C$ for 60 days. The optimal conditions for TSEH method were revealed in temperature at $50^{\circ}C$ 3 hours digestion with alcalase (Aroase AP-10, $0.3%$ w/v, pH 8.0) at the 1st stage and $45^{\circ}C$ 2 hours digestion with neutrase (Pandidase NP-2, $0.3\%$ w/v, pH 6.0) at the 2nd stage. Among water extracts, autolytic extracts and 4 kinds of enzyme hydrolysates tests, TSEH method was superior to other methods on the aspect of yields, nitrogen contents, taste such as umami and control of off-flayer formation, and transparency of extracts. From the results of chemical experiments and sensory evaluation, we may conclude that TSEH from low-utilized marine products is more flavorable compared the conventional enzyme hydrolysates, it could be commercialized as the seasoning substances.

  • PDF

Development of Natural Seasoning using Desalinated Tuna Boiled Extract (탈염된 참치 자숙액을 이용한 천연조미료 개발)

  • KIM Se-Kwon;BYUN Hee-Guk;JEON You-Jin;JOO Dong-Sik;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 1999
  • The hydrolysate of desalinated tuna boiled extract (TBE) were prepared by continuous hydrolysis of TBE using a membrane reactor. TBE and tuna boiled extract hydrolysate (TBEH) were isolated depending on molecular weights. The major molecular weight distributions of TBEH-l0K, TBEH-5K and TBEH-lK were 9,800Da, 3,000Da and 990Da, respectively. The amounts of nucleotides and their related compounds of TBE were 3.47 $\mu$mole/g AMP, 23.75 $\mu$mole/g IMP, 9.07 $\mu$mole/g inosine and 1.89 $\mu$mole/g hypoxanthine. Total content of amino acids having desirable taste (glycine, glutamic acid, alanine, proline, aspartic acid, serine) was about $63\%$ of total amino acid from TBE and about $62\%$ from TBEH. The natural seasoninings were prepared with TBE and TBEH. From the results of sensory evaluations, complex seasoning containing TBEH-1K was almost equal to the shellfish complex seasoning obtained from the market. The mixed sauce which was made by mixing of $50\%$ TBEH sauce and $50\%$ fermented soy sauce was similar to the tradition soybean sauce in product quality and it showed the possibility to be used for the substitute product for acid hydrolyzed soysauce.

  • PDF