• Title/Summary/Keyword: HYBRID COMPOSITE

Search Result 1,054, Processing Time 0.023 seconds

A Nonlinear Analysis on the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판의 단위모델에 대한 비선형 해석)

  • 정광회;정연주;구현본;김정호;김병석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.85-91
    • /
    • 2003
  • This paper presents a 3D nonlinear analysis with slip in steel-concrete hybrid deck. In this study, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts as full-composite, partial-composite, and non-composite, considering the longitudinal behavior and end-slip as well as the yield load and ultimate load of it. Also, it proved that the stress of lower steel plate at the support was increased, because of frictional forces by reaction forces in the steel-concrete hybrid deck. The end-slip did not occur near the full-composite state, but it was largely increased as the slip modulus decreased. On the basis of the EC 4, the state of steel-concrete hybrid deck classified into brittle behavior and ductile one using the end-slip of it

  • PDF

Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites (하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites (강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Kim, In-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

A STUDY ON THE SURFACE ROUGHNESS AND REFLECTIVITY AFTER POLISHING OF THE MICROFILL, HYBRID COMPOSITE RESINS (Microfill, Hybrid 복합레진 연마 후 표면조도와 광반사율에 관한 연구)

  • Moon, Anne-Jay;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.513-533
    • /
    • 1994
  • The smooth surface after polishing of composite resin contributes to the patient's comfort, and appearance and longevity of the restoration. This study was performed for the quantitative analysis of the effects of the various finishing and polishing instruments on the surface roughness and reflectivity of the microfill, and hybrid composite resins. Cylindrical specimens 2mm thick and 10mm in diameter of Silux Plus, Durafill VS ; Z100, Prisma TPH, Brilliant, and Herculite XR composite resin were polymerized under the matrix strip. 18 specimens for each composite resin materials were divided into 6 groups ; 5 experimental groups were abraded with # 600 sand paper to remove resin-rich layer, except control. Thereafter, using diamond bur(Mani Dia-Burs), carbide bur(E. T. carbide set 4159), rubber point(Composite polishing kit), aluminum-oxide disk(Sof-Lex disk), polishing paste(Enhance system) ; each specimen was polished to its best achievable surface according to manufacturer's directions. Final polished surfaces were evaluated for the surface roughness with profilometer(${\alpha}$-step 200, Tencor instruments, USA) and for the reflectivity with image analyser(Omniment Image Analyser, Buehler, USA). The results were as follows. 1. Polishing paste or aluminum-oxide disk finish in the microfill, and hybrid composite resins was as smooth as matrix strip finish on the surface roughness test. 2. Polishing paste or aluminum-oxide disk finish in the microfill ; polishing paste finish in the hybrid composite resins was as reflective as matrix strip finish on the refectivity test. 3. For the polishing paste, there were no significant differences between the composite resin materials on the surface roughness and refectivity tests. 4. For the aluminum-oxide disk, the best result was obtained with the microfill composite resin on the surface roughness and reflectivity test. 5. Diamond bur, carbide bur, and rubber point were inappropriate for the final polishing instruments.

  • PDF

Fabrication of Reaction Squeeze Cast (${Al_2}{O_3}$+Si)/Mg Hybrid Metal Matrix Composites (반응용탕단조법에 의한 (${Al_2}{O_3}$+Si)/Mg 하이브리드 금속복합재료의 제조)

  • 전상혁;오동현;박익민;조경목;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.109-115
    • /
    • 2000
  • In the present study, (10%$Al_2O_3$+5%Si)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, molten Mg was infiltrated into the preform of 10%$Al_2O_3$+5%Si and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast (RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement ($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg matrix for the squeeze cast hybrid composite. Mechanical properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast (15%$Al_2O_3$)/AZ91 Mg composite.

  • PDF

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

Process Development of Metal-Composite Hybrid Structures (금속-복합재료 하이브리드 구조체 재활용 프로세스 개발)

  • Hwang, Hui-Yun;Roney, Md. Fardim Sufian;Xi, Zhu
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2021
  • Recently, metal-composite hybrid structures became a very attractive material system for various applications such as automobile and air vehicles due to their design flexibility as well as superior mechanical properties. On the other hand, recycling is a hot issue to reduce material wastes and environmental pollution, so that many countries made recycling regulations. But the recycling of metal-composite hybrid structures is not fully considered since the development and application are very early stage. We developed and optimized the recycling process for metal-composite hybrid structures based on the easy adaptation of the local recycling companies.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite (Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study. AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.