• 제목/요약/키워드: HVOF spraying

검색결과 44건 처리시간 0.031초

최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성 (Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process)

  • 송기오;조동율;윤재홍;방위;윤석조;윤국태;서창희;황순영;하성식
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.

$H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동 (Characteristics and oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%(NiCr) coatings depending on $H_2/O_2$ ratio)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.126-135
    • /
    • 1997
  • $H_2/O_2$ 비에 따른 Hybrid HVOF 용사된 $Cr_3C_2$-7wt%(NiCr) 용사층의 특성 및 산화거동 This study was performed to investigate the influence of fuel/oxygen ratio (F/O=3.2, 3.0, 2.8) on the characteristics and the oxidation behavior of the hybrid-HVOF sprayed $Cr_3C_2$-7wt%NiCr coatings. Decomposition and the oxidation of the $Cr_3C_2$was occured during spraying. The degree of transformation from $Cr_3C_2$to $Cr_7C_3$ was increased with decreasing the F/O ratio. The microstructural differences of the as sprayed coating with F/O ratio can not be distinguished, However, large pores were diminished and then the coatings became dense by heat treatment. Microhardness of the as-sprayed specimen which sprayed with F/O=3.0 condition was hightest ($Hv_{300}$=1140) and the hardness was increased to 1500 after heat treatment at $600^{\circ}C$ for 50hrs in air. It was supposed that hardness was increased due to the formation of $Cr_2O_3$ within $Cr_3C_2$/$Cr_7C_3$matrix and the densification of coating layer during heat treatment. Apparent activation energy for oxidation was varied from 21.2 kcal$mol^{-1}K^{-1}$ to 23.8 kcal$mol^{-1}K^{-1}$ with respect to the F/O ratio. The surface morphology was changed to porous and oxide chusters were grown after oxidation $1000^{\circ}C$ for 50 hours by the aggressive evolution of gas phase ($CrO_3$ and$CO_2$). The oxide cluster was composed of Ni and Cr.

  • PDF

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제40권4호
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과 (Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF)

  • 주윤곤;윤재홍;이재현
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.52-58
    • /
    • 2019
  • The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰 (Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings)

  • 고재황;이동복
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

초고속화염용사법으로 제조된 WC-CoCr코팅의 공정 최적화 (Optimal Process of WC-CoCr Coating manufactured by HVOF Thermal Spraying)

  • 송기오;조동율;윤재홍;방위;윤석조;황순영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.171-172
    • /
    • 2007
  • 초고속용사법(HVOF)은 우수한 강도와 높은 경도를 가지는 치밀한 후막형성이 가능하고 피로특성 및 열충격에 대한 저항성이 양호하여 종래에 사용되어 오던 전기도금등을 통한 표면처리 방법을 대체시키고 있다. 항공기엔진의 주요부품, 초고속 air bearing spindle등의 내구성향상을 위한 WC계 분말을 이용한 표면처리의 공정을 다구찌실험계획법을 이용해 최적조건을 선정하였다.

  • PDF

구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가 (Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy)

  • 한민수;김민성;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계 (A Process Optimization of HVOF on ALBC3 by Experiments Design)

  • 김영문;임병철;김민태;박상흡
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.448-453
    • /
    • 2016
  • 선박의 프로펠러나 임펠러와 같은 유체기기에서는 캐비테이션 현상으로 인해 마모와 침식이 발생한다. 이와 같은 기기손상은 소음과 진동을 발생시켜 기기수명을 단축시키는 문제점을 가지고 있다. 본 연구에서는 캐비테이션 현상에 대한 저항성을 높이기 위해 산업 현장에서 많이 사용되고 있는 고속화염용사코팅의 공정 최적화에 따른 각 요소별 중요도를 분석하였다. 다구찌 실험계획법을 적용하여 ALBC3 모재 표면에 비정질 분말을 코팅하였고 기공도 실험을 통해 각 요소별 특성을 분석하였다. 다구찌 실험계획법에 의해 고속 화염용사(HVOF) 코팅의 최적 공정을 찾아낸 결과 연소압이 80 psi, 코팅거리가 270 mm, 이송속도가 200 mm/s, 분말속도는 25 g/min으로 확인되었고, 그 결과, 연소압, 코팅거리 및 분말속도는 25% 이상으로 비슷한 기여도를 나타냈고 이송속도는 19%로 다소 떨어지는 수준을 나타내었다. 공정에 대한 각 인자별 기여도는 약간의 차이는 있지만 그 차이가 크지 않으므로 네 개의 인자 모두 고속 화염용사(HVOF) 코팅 공정에서 중요한 기여를 하였다.