• Title/Summary/Keyword: HVOF

Search Result 102, Processing Time 0.022 seconds

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.

Characteristics of the HVOF_sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coationg Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 특성)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.849-855
    • /
    • 1998
  • The purpose of this study was performed to compare to the characteristics (microstructure, phase change and hardness, erosion rate) of HVOF sprayed coatings with 20wt% NiCr claded and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. In the case of the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder, microstructural feature showed that the primary $\textrm{Cr}_{3}\textrm{C}_{2}$ was remained in the coating but was barely remained in the mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating. As a results of XRD analysis, both 20wt%NiCr claded and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder was decomposed during spraying but the degree of decomposition of the 20wt%NiCr claded was lower than 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. After spraying the mixed powder for microhardness was higher than claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder and which was increased up to $\textrm{Hv}_{300}$= 1665 after heat treatment to $1000^{\circ}C$. however. 20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ became to decrease at $600^{\circ}C$ which was the maximum.

  • PDF

Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy (WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process (High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향)

  • Wi, Dong-Yeol;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Effect of Heat Treatment on the Microstructures and Properties of HVOF Sprayed Ni-Cr-W-Mo-B Alloy Coatings (초고속화염용사법으로 제조된 Ni-Cr-W-Mo-B 합금 코팅의 미세조직과 특성에 미치는 열처리 효과)

  • 민경오;이창희
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.48-54
    • /
    • 2000
  • The corrosion properties of Ni-Cr-W-Mo-B alloy sprayed by the high velocity oxy-fuel spraying (HVOF) was studied as a function of heat treatment by using both potentiodynamic polarization and immersion tests in the H₂SO₄ solution. The mechanical property was also evaluated by a microhardness tester. Microstructural characteristics of te as-sprayed and annealed coatings at 550, 750 and 950℃ have been analyzed by means of OM, XRD, SEM and TEM. The results showed that the corrosion resistance was improved by increasing the annealing temperature. As-sprayed coating had metastable and heterogeneous phases such as amorphous, nanocrystalline and very refined grain and precipitates, which induced a localized corrosion. The localized corrosion occurred preferentially at the unmelted particles which were composed of Ni matrix and Cr, W and Mo riched phase segregated in the boundaries. As annealing temperature was increased, the microstructure had shown some changes - reduction of porosity and s[plat boundary decomposition and crystallization of amorphous/nanocrystalline phases, grain coarsening,, formation and growth of precipitates such as {TEX}$M_{23}C_{6}${/TEX} and {TEX}$M_{7}C_{3}${/TEX}. In addition, the compositional difference between matrix and boundary phases gradually disappeared, which changed the corrosion type from localized corrosion to general corrosion and thus enhanced corrosion resistance.

  • PDF

Comparison of HVOF Thermal Spray Coatings of T800 and WC-Co Powders

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Baek, N.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.295-301
    • /
    • 2006
  • Hard chrome plating has been used in surface hard coating over 50 years both for applying hard coating and re-building of worn components. Hard chrome plating solution and mist pollute environment with very toxic $Cr^{6+}$(hex-Cr) known as carcinogen which causes lung cancer, High velocity oxy-fuel (HVOF) thermal spray coatings of WC base cermet and Co-alloy powders are the most promising candidates for the replacement of the traditional hard chrome plating. Surface properties, wear, and friction behaviors of micron size Co-alloy (T800) and micron size WC-l2Co (WC-Co) have been studied for the application as hard coatings. The temperature dependence of wear and friction behaviors of T800 and WC-Co have been investigated at the temperature of $25^{\circ}C$ and $538^{\circ}C$ for the application to high speed spindle.