• Title/Summary/Keyword: HVL

Search Result 65, Processing Time 0.023 seconds

Feasibility of clay-shielding material for low-energy photons (Gamma/X)

  • Tajudin, S.M.;Sabri, A.H.A.;Abdul Aziz, M.Z.;Olukotun, S.F.;Ojo, B.M.;Fasasi, M.K.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1633-1637
    • /
    • 2019
  • While considering the photon attenuation coefficient (${\mu}$) and its related parameters for photons shielding, it is necessary to account for its transmitted and reflected photons energy spectra and dose contribution. Monte Carlo simulation was used to study the efficiency of clay ($1.99g\;cm^{-3}$) as a shielding material below 150 keV photon. Am-241 gamma source and an X-ray of 150 kVp were calculated. The calculated value of ${\mu}$ for Am-241 is higher within 5.61% compared to theoretical value for a single-energy photon. The calculated half-value layer (HVL) is 0.9335 cm, which is lower than that of ordinary concrete for X-ray of 150 kVp. A thickness of 2 cm clay was adequate to attenuate 90% and 85% of the incident photons from Am-241 and X-ray of 150 kVp, respectively. The same thickness of 2 cm could shield the gamma source dose rate of Am-241 (1 MBq) down to $0.0528{\mu}Sv/hr$. For X-ray of 150 kVp, photons below 60 keV were significantly decreased with 2 cm clay and a dose rate reduction by ~80%. The contribution of reflected photons and dose from the clay is negligible for both sources.

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation

  • Mokhtari, K.;Kheradmand Saadi, M.;Ahmadpanahi, H.;Jahanfarnia, Gh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3051-3057
    • /
    • 2021
  • The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks.

Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite

  • Allam, Elhassan A.;El-Sharkawy, Rehab M.;El-Taher, Atef;Shaaban, E.R.;RedaElsaman, RedaElsaman;Massoud, E. El Sayed;Mahmoud, Mohamed E.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2253-2261
    • /
    • 2022
  • In this study, nano-scaled shielding materials were assembled and fabricated by doping different weight percentages of Nano-mercuric oxide (N-HgO) into Nano-Bentonite (N-Bent) based on using (100-x% N-Bent + x% N-HgO, x = 10, 20, 30, and 40 wt %). The fabricated N-HgO/N-Bent nanocomposites were characterized by FT-IR, XRD, and SEM and evaluated to evaluate their shielding properties toward gamma radiation by using four different γ-ray energies form three point sources; 356 keV from 133Ba, 662 keV from 137Cs as well as 1173, and 1332 keV from 60Co. The γ-rays mass attenuation coefficients were plotted as a function of the doped N-HgO concentrations into N-HgO/N-Bent nanocomposites. The computed values of mass attenuation coefficients (µm), effective atomic number (Zeff) and electron density (Nel) by the as-prepared samples were found to increase, while the half value layer (HVL) and mean free path (MFP) were identified to decrease upon increasing the N-HgO contents. It was concluded also that the increase in N-HgO concentration led to a direct increase in the mass attenuation coefficient from 0.10 to 0.17 cm2/g at 356 keV and from 0.08 to 0.09 cm2/g at 662 keV. However, a slight increase was observed in the identified mass attenuation coefficients at (1172 and 1332 keV).

The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;S.A. Bassam;P.N. Naseef Mohammed;N.K. Libeesh;A.S. Sachana;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2380-2387
    • /
    • 2023
  • Hyperspectral data and its ability to explore the minerals and their associated rocks have a remarkable application in mineral exploration and lithological characterization. The present study aims to explore the radiation shielding aspects of the iron ore in Kerala with the aid of the Hyperion hyperspectral dataset. The reflectance-spectra obtained from the laboratory conditions as well as from the image show various absorptions. The results from the spectra are validated with geochemical data and GPS points. The Monte Carlo simulation employed to evaluate the radiation shielding ability. Raising the oxygen ions caused a noteworthy decrease in the µ values of the studied rocks which is accompanied by an increase in Δ0.5 and Δeq values. The Δ0.5 and Δeq values increased by factors of approximately 77 % with raising the oxygen ions between 44.32 and 47.57 wt.%. The µ values varies with the oxygen concentrations, where the µ values decreased from 2.531 to 0.925 cm-1 (at 0.059 MeV), from 0.381to 0.215 cm-1 (at 0.662 MeV), and from 0.279 to 0.158 cm-1 (at 1.25 MeV) with raising the oxygen ions from 44.32 to 47.43 wt.%.

Enhancing Gamma-Neutron Shielding Effectiveness of Polyvinylidene Fluoride for Potent Applications in Nuclear Industries: A Study on the Impact of Tungsten Carbide, Trioxide, and Disulfide Using EpiXS, Phy-X/PSD, and MCNP5 Code

  • Ayman Abu Ghazal;Rawand Alakash;Zainab Aljumaili;Ahmed El-Sayed;Hamza Abdel-Rahman
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.184-196
    • /
    • 2023
  • Background: Radiation protection is crucial in various fields due to the harmful effects of radiation. Shielding is used to reduce radiation exposure, but gamma radiation poses challenges due to its high energy and penetration capabilities. Materials and Methods: This work investigates the radiation shielding properties of polyvinylidene fluoride (PVDF) samples containing different weight fraction of tungsten carbide (WC), tungsten trioxide (WO3), and tungsten disulfide (WS2). Parameters such as the mass attenuation coefficient (MAC), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and macroscopic effective removal cross-section for fast neutrons (ΣR) were calculated using the Phy-X/PSD software. EpiXS simulations were conducted for MAC validation. Results and Discussion: Increasing the weight fraction of the additives resulted in higher MAC values, indicating improved radiation shielding. PVDF-xWC showed the highest percentage increase in MAC values. MFP results indicated that PVDF-0.20WC has the lowest values, suggesting superior shielding properties compared to PVDF-0.20WO3 and PVDF-0.20WS2. PVDF-0.20WC also exhibited the highest Zeff values, while PVDF-0.20WS2 showed a slightly higher increase in Zeff at energies of 0.662 and 1.333 MeV. PVDF-0.20WC has demonstrated the highest ΣR value, indicating effective shielding against fast neutrons, while PVDF-0.20WS2 had the lowest ΣR value. The Monte Carlo N-Particle Transport version 5 (MCNP5) simulations showed that PVDF-xWC attenuates gamma radiation more than pure PVDF, significantly decreasing the dose equivalent rate. Conclusion: Overall, this research provides insights into the radiation shielding properties of PVDF mixtures, with PVDF-xWC showing the most promising results.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

The Average Glandular Dose in Mammography and Quality Control of the Equipment Status (유방촬영검사에서 평균유선선량과 장치의 품질관리 실태)

  • Jung, Hong-Ryang;Hwang, Su-Lyun;Ha, Bon-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.111-120
    • /
    • 2011
  • A purpose of study is to develop optimization and radiation dose exposure reference level by measuring actual radiation dose in condition of quality control of mammography equipment for 39 clinics. The result were as follows. First, we measured T-test separating radiology from general clinic. According to the test, mAs was measured at average 78.58 mAs; radiology at 80.16 mAs and general clinic at 77.22 mAs. And, kerma rate was measured at average 7.71 mGy/mR; radiology at 8.94 mGy/mR and general clinic at 6.66 mGy/mR. HVL was measured at average 0.42 mmAl; radiology at 0.40 mmAl and general clinic at 0.43 mmAl. Average glandular dose was measured at average 1.14 mGy; radiology at 1.09 mGy and general clinic at 1.19 mGy. Second, we measured value of mAs, HVL, processing method and so on dividing two groups. And, we compared and analyzed average value measured using T-test. As a result, there was significance level in SID(P<0.05). There was significance level in mAs(P<0.05). Because processor was measured at 1.00 mGy and CR at 1.17 mGy according to the processing method of radiology. Third, according to the correlation analysis, radiology had significance level between average glandular dose and mAs and general clinic had significance level between average glandular dose and SID(P<0.05). Forth, as a result of regression analysis, mAs affected 22.7%t of average glandular dose and SID affected 21.7% of average glandular dose, which had significance level(P<0.05). And, mAs affected 29.0% of average glandular dose in radiology and SID affected 29.1% of average glandular dose in general clinic, which was most influential.

Analyze for the Quality Control of General X-ray Systems in Capital region (수도권지역 일반촬영 장비의 정도관리 분석)

  • Kang, Byung-Sam;Lee, Kang-Min;Shim, Woo-Yong;Park, Soon-Chul;Choi, Hak-Dong;Cho, Yong-Kwon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.93-102
    • /
    • 2012
  • Thanks to the rapid increase of the interest in the quality control of the General X-ray systems, this research proposes the direction of the quality control through comparing and inspecting the actual condition of the respective quality control in the Clinic, the educational institution and the hospital. The subjects of the investigation are diagnostic radiation equipment's in the clinic, the educational institution and the hospital around the capital. A test of kVp, mR/mAs out put test and reproducibility of the exposure dose, half value layer, an accordance between the light field and the beam alignment test, and lastly reproducibility of the exposure time. Then the mean difference of the percentage, the CV (Coefficient of Variation, CV) and the attenuated curve which are respectively resulted from the above tests are computed. After that we have evaluated the values according to the regulations on the Diagnostic Radiation Equipment Safety Administration regulations. In the case of the clinic and the educational institution, there were 22 general X-ray devices. And 18.2% of the kVp test, 13.6% of the reproducibility of exposure dose test, 9.1% of the mR/mAs out put test, and 13.6% of the HVL (Half Value Layer) test appeared to be improper. In the case of the hospital, however, there were 28 devices. And 7.1% of the reproducibility of exposure dose, 7.1% of the difference in the light field/ beam alignment, and 7.1% of the reproducibility of the exposure time appeared to be improper. According to the investigation, the hospital's quality control condition is better than the condition in the clinic and the educational institution. The quality control condition of the general X-ray devices in the clinic is unsatisfactory compared to the hospital. Thus, it is considered that realizing the importance of the quality control is necessary.

A Study on the Effects of the X-Ray Irradiation and Thyroid Gland on the Erythropoietic System in Rabbit (가토(家兎)에 있어서 방사선조사(放財線照射)와 갑상선(甲狀腺)이 조혈계(造血系)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kong-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 1967
  • The effects of X-ray irradiation and the thyroid gland on the erythropoietic system were studied in the white male rabbits. The total body irradiation was done in doses of 250 r and 500 r to each of 5 rabbits for 10days. The factors were 220KV, 10mA, FLI/4 Cu+1 mmAI(HVL:2.0 mm Cu) 50 cm F.S.D. The thyroid dysfunction was experimentally induced, by giving 2mg of thyroid tablets per kg body weight for 15 days in 5 rabbits for hyperthyroidism and by giving 1.5 mC of $^{131}I$ per kg body weight in another 5 rabbits for hypothyroidism. Fourteen healthy rabbits were used as control. The hematologic changes and ferrokinetic data obtained from $^{59}Fe$ and apparent half survival of the red blood cells obtained from $^{51}Cr$ were compared. Following were the results: A. X-ray irradiated group; 1. There were no significant changes in hematologic findings except for leucopenia. A slight decrease of red blood cells was observed in 500 r irradiated animals. 2. The decreases in the iron turnover rates of the plasma and red blood cells as well as in the red cell renewal rate were found in both groups. A :significant decrease of the red cell iron utilization rate was observed in the 500 r irradiated animals. 3. The apparent half survival times of the red blood cells were slightly, in the 250 r ($12.1{\pm}0.80$ days), and markedly shortened in the 500 r irradiated animals ($9.8{\pm}1.38$ days), the normal being $14.0{\pm}1.6$ days. 4. It appears, therefore, that the anemia caused by X-ray irradiation is due to the inhibition of hemopoietic function and the excess destruction of the red blood cells. B. Thyroid dysfunction group; 1. The slight increases of the red blood cell count and circulating blood volume with the normal serum iron level were observed in the hyperthyroid group, while the decreases of the red and white blood cell counts, hemoglobin and hematocrit values with a marked decrease of the serum iron level in the hypothyroid group. 2. A marked decrease of the plasma iron disappearance rate with increases of plasma iron turnover, red cell iron utilization and red cell iron turnover were observed in the hyperthyroid group, while the marked delay and decreases in the hypothyroid group. 3. The apparent half survival times of the red blood cells were almost the same with the control in the hyperthyroid group, ($14.0{\pm}1.58$ while a marked shortening in the hypothyroid group $10.6{\pm}0.30$. 4. It was reconfirmed that the thyroid hormones bear a close relationship with the erythropoietic system, namely, the latter is stimulated by the former. The lack of the thyroid hormones thus induces the bone marrow depression leading to anemia the major cause of which, therefore, is not hemolysis.

  • PDF