• Title/Summary/Keyword: HVDC transmission System

Search Result 106, Processing Time 0.028 seconds

Control Hierarchy Analysis of Haenam-Cheju HVDC system (해남-제주 HVDC 계통의 제어 계층 구조 분석)

  • Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1327-1330
    • /
    • 1999
  • In this paper control hierarchy of Haenam-Cheju HVDC link are analyzed and their functional specifications are summarized related to their level. The control functions for the submarine DC transmission are implemented by software programs on 16-bit parallel processor-based machines which are composed of subunits hierarchically linked each other

  • PDF

Maximum Modulation Index of VSC HVDC based on MMC Considering Compensation Signals and AC Network Conditions (전력계통 전압 변동과 순환 전류 보상 성분을 고려한 MMC 기반 VSC-HVDC의 최대 변조 지수 선정에 관한 연구)

  • Kim, Chan-Ki;Belayneh, Negesse Belete;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • This study deals with the modulation index (MI) of a voltage source converter (VSC) HVDC system based on a modular multilevel converter (MMC). In the two-level converter, the purpose of the MI is to maximize the achievable AC voltage of the converter from a fixed DC voltage. Unlike that in a two-level converter, the MI in the MMC topology plays a role in making the converter a voltage source using a capacitor. The circulating current in the MMC distorts the AC voltage reference, and the distortion affects the MI. In addition, the AC network conditions, such as AC voltage variation and reactive power, affect the MI. Therefore, the MI should be optimized with consideration of internal and external factors. This study proposes a method to optimize the MI of an MMC HVDC system.

Design of PID Controller using Immune Algorithm for AC-DC Power System (교류-직류시스템의 안정화를 위한 면역알고리즘을 이용한 최적 PID 제어기 설계)

  • 정현화;허동렬;이정필;정형환
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.225-230
    • /
    • 2001
  • In this paper, a method for optimal design of PID controller using the immune algorithm(IA) has been proposed to improve the stability of A.C.-D.C. power system. The process of this study is composed of formulation of basic controls on HVDC transmission system, mathematical model preparation for stability analysis, and supplementary signal control by an optimal PID controller using the IA. The dynamic property was verified through computer simulations regarding transient stability.

  • PDF

Voltage Recovery Capability of Offshore Wind Farm Connected to a Weak Grid via a VSC-HVDC (VSC-HVDC를 통한 약한 계통에 연계된 해상풍력발전시스템의 전압회복능력)

  • Phan, Dinh-Chung;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.702-703
    • /
    • 2011
  • Large offshore wind farms using high voltage direct current transmission system (HVDC) have been considered and exploited in many countries in the world. The maintenance of the stable operation of wind farm and interconnected system is an important issue, especially in the case of fault. To ensure the stable operation after fault clearance, the PCC voltage must be restored as soon as possible and meet the grid code requirement. This paper will evaluate the PCC voltage recovery ability of a large offshore wind farm as it is connected to a weak grid via a VSC-HVDC.

  • PDF

Detection of DC-Cable Fault Location for HVDC Transmission Systems Integrated with Wind Farm

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.71-72
    • /
    • 2014
  • This paper presents a method to find the fault location on the DC cables for the HVDC transmission systems which utilizes a hybrid topology of the diode rectifier and the voltage-source converter (VSC) in the wind farm (WF) side. First, the DC-cable fault occurring in this HVDC system is analyzed in detail. Then, the DC-cable fault location is detected from the two relative voltages located on the same section of the cable, which are estimated from a pair of DC-cable voltage and current measurements. The effectiveness of the method is verified by the simulation results.

  • PDF

A New Synthetic Test Circuit for Testing Thyristor Valve in HVDC Converter (HVDC 컨버터의 Thyristor Valve 시험을 위한 새로운 합성시험회로)

  • Kim, Kyeong-Tae;Han, Byung-Moon;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • This paper proposes a new synthetic test circuit (STC) to confirm the switching operation of thyristor valve in HVDC converter. The proposed STC uses a 6-pulse thyristor converter with 2-phase chopper as a high-current source to provide turn-on current to the test valve. The operation of proposed STC was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware scaled model was built and tested to confirm the feasibility of implementing a real-size test facility. The proposed system has an advantage of simple structure and operation over the existing system.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

Design and Implementation of a Universal System Control Strategy Applicable to VSC-HVDC Systems

  • Zhao, Yue;Shi, Li-bao;Ni, Yi-xin;Xu, Zheng;Yao, Liang-zhong
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.225-233
    • /
    • 2018
  • This paper proposes a universal system control strategy for voltage source converter (VSC) based high voltage direct current (HVDC) systems. The framework of the designed control strategy consists of five layer structures considering the topology and control characteristics of the VSC-HVDC system. The control commands sent from the topmost layer can be transmitted to the next layer based on the existing communication system. When the commands are sent to each substation, the following transmission of commands between the four lower layers are realized using the internal communication system while ignoring the communication delay. This hierarchical control strategy can be easily applied to any VSC-HVDC system with any topology. Furthermore, an integrated controller for each converter is designed and implemented considering all of the possible operating states. The modular-designed integrated controller makes it quite easy to extend its operating states if necessary, and it is available for any kind of VSC. A detailed model of a VSC-HVDC system containing a DC hub is built in the PSCAD/EMTDC environment. Simulation results based on three operating conditions (the start-up process, the voltage margin control method and the master-slave control method) demonstrate the flexibility and validity of the proposed control strategy.

Analysis of HVDC transmission with parallel AC systems using PACAD/EMTDC (PSCAD/EMTDC를 이용한 HVDC, AC 병행 송전선로 계통해석)

  • Lee, Sangmin;Yoo, Yeuntae;Kim, Hyunwook;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.217-218
    • /
    • 2015
  • This paper presents an anaysis of parallel operated HVDC and AC transmissions' transient stability and control analysis by using PACAD/EMTDC program. We measured and analyzed power trasfer in case of various operating conditions including ac, dc faults to find an effects to the power system of the operating conditions. In this project, Simulation of ac/dc parallel system that maximize margins of the ac system and allow a higher power transfer is performed and analyzed.

  • PDF

Analysis of Back-to-Back HVDC system featured for Asynchronous Connection (비동기 전력계통 연계를 위한 Back-To-Back 직류설비의 운전특성 해석)

  • Kwak, J.S.;Wook, W.J.;Koh, B.E.;Kim, C.K.;Shim, E.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1289-1291
    • /
    • 2000
  • The operation of Back-To-Back HVDC system for asynchronous connection is described. It can exchange electric power up to 300 MW between separately operated two rower systems, making the interaction on each system minimum. The analysis is done under three different AC transmission lines interconnected to BTB HVDC.

  • PDF