• Title/Summary/Keyword: HVDC System

Search Result 377, Processing Time 0.028 seconds

Grid Voltage Regulation with MMC-HVDC System

  • Quach, Ngoc-Thinh;Jeong, Woo-Cheol;Yang, Hang-Jun;Choi, Jong-Yun;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.146-147
    • /
    • 2014
  • This paper presents an operation of the modular multilevel converter-high voltage direct current (MMC-HVDC) system as a Statcom to support the grid voltage. The advantage of the MMC-HVDC system is that it can control the active and reactive powers independently. The proposed control scheme will be designed by combining this performance and the control method of the Statcom. The grid voltage is regulated by the control of the reactive power, meanwhile the active power is controlled according to its applications. The simulation results based on the PSCAD/EMTDC simulation program will evaluate the effectiveness of the control scheme.

  • PDF

Capacitance Value Analysis of Sub-module Test Circuit for MMC-based HVDC System (MMC 기반 HVDC 시스템용 서브모듈 시험회로의 커패시터 용량 분석)

  • Seo, Byuong-Jun;Park, Kwon-Sik;Jo, Kwang-Rae;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won;Kim, Tae-Jin;Lee, Jong-Pil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.433-439
    • /
    • 2018
  • This study considers the design of a submodule test circuit for the modular multi-level converter (MMC)-based HVDC systems. A novel submodule test circuit is proposed to provide not only an AC but also a DC component to the submodule current. However, the current waveforms depend on the capacitor voltages. Therefore, determining the capacitance value of the test circuit is important. Finding a proper capacitance value is easy when the proposed analysis method is used. Simulation and experimental results show the usefulness of the proposed method.

Predictive Direct Power Control in MMC-HVDC System (MMC-HVDC 시스템의 예측 기반 직접전력제어)

  • Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.403-407
    • /
    • 2018
  • This study proposes a predictive direct power control method in a modular multilevel converter (MMC) high-voltage direct-current (HVDC) system. The conventional proportional integral (PI)-based control method uses a cascaded connection and requires an optimal gain selection procedure and additional decoupling scheme. However, the proposed control method has a simple structure for active/reactive power control due to the direct power control scheme and exhibits a fast dynamic response by predicting the future status of system variables and considering time delay. The effectiveness of the proposed method is verified by simulation results.

HVDC 시스템 이중화 방안에 대한 고찰

  • Lee, Yil-Hwa;Jung, Yong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.187-188
    • /
    • 2012
  • HVDC는 새로 건설하는 대규모 송전 시스템에서 AC 송전 시스템을 대체하고 있다. DC 송전의 장점은 송전 손실이 적고, 케이블 효율이 좋아서 더 얇고 적은 수의 케이블로도 동일한 크기의 전력 송전이 가능하며 특히, 전력 시스템의 이상으로 파급되는 문제를 막을 수 있다. 본 논문에서는 HVDC 시스템을 운영하는데 있어서 가장 중요한, 시스템의 신뢰성을 높이기 위한 시스템의 이중화 구성을 분석하고, 이중화의 예시와 효율적인 방안을 제시한다.

  • PDF

Protective function simulation for fault detection of Valve in HVDC system. (HVDC시스템의 밸브 측 사고감지를 위한 보호요소 시뮬레이션)

  • Hwang, Ho-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.235-236
    • /
    • 2012
  • HVDC시스템에서 시스템을 보호하기 위한 여러 가지의 보호요소 중 밸브그룹 즉 싸이리스터를 보호하는 요소 중의 하나를 시뮬레이션 해보았다. 변압기 2차측 혹은 DC송전선로에 사고가 발생하였을 때 신속히 동작하여 과전류나 과전압으로부터 밸브를 보호하는데 그 목적이 있다 하겠다. 방법은 밸브의 앞단(변압기 2차측)과 밸브의 뒷단(DC 송전선로 측 전류)를 측정하여 그 차이가 일정치 이상으로 커졌을 때 동작하며, 그 크기와 동작시간은 서로 반비례 관계를 가진다. 이러한 사고를 PSCAD를 이용하여 시뮬레이션 해보았다.

  • PDF

Insulation Coordination of VSC HVDC based on MMC topology (VSC MMC HVDC System의 절연설계)

  • Kim, Hyun-Min;Kim, Hui-Su;Cho, Haesong;Kim, Chan-ki
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.280-281
    • /
    • 2020
  • 본 논문은 MMC 기반의 전압형 HVDC System의 절연설계에 대한 내용을 담고 있다. 절연설계 시 필요한 Surge Arrester 전압결정, 이격거리, 연면거리에 대해 DC측과 AC측을 비교하고 그에 따른 계산 방법에 관한 내용을 기술한다.

  • PDF

Jeju 80kV HVDC Controller Modeling Using PSCAD/EMTDC Program (PSCAD/EMTDC 프로그램을 이용한 제주 80kV HVDC 제어기 모델링)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.533-541
    • /
    • 2011
  • This paper studies modeling of Jeju 80kV HVDC system and its controller by using PSCAD/EMTDC program. Reduced ac network is applied to verify interaction between ac network and dc system. Design parameter is applied to the converter transformer, harmonic filter and dc transmisstion line to simulate dc system. HVDC controller is divided into a rectifier controller and a inverter controller according to the converter operating mode. The inverter controller is composed of current control, voltage control and extingtion angle control. The rectifier controller is composed of current control and voltage control. Both controller has VDCOL characteristics so that current order is dependant on voltage variation. Step response, ac network single phase fault, three phase fault is simulated to verify the dynamic performance of controller model in both transient state and steady state.

Development of Fault Location Algorithm and Its Verification Experiments for HVDC Submarine Cables

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Wang, Xinheng;Kim, Yong-Kab;Lee, Jong-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.859-868
    • /
    • 2012
  • A new fault location algorithm based on stationary wavelet transform and its verification experiment results are described for HVDC submarine cables in this paper. For wavelet based fault location algorithm, firstly, 4th level approximation coefficients decomposed by wavelet transform function are superimposed by correlation, then the distance to the fault point is calculated by time delay between the first incident signal and the second reflected signal. For the verification of this algorithm, the real experiments based on various fault conditions and return types of fault current are performed at HVDC submarine cable test yard located in KEPCO(Korea Electric Power Corporation) Power Testing Center of South Korea. It proves that the fault location method proposed in this paper is very simple but very quick and accurate for HVDC submarine cable fault location.

Mechanical and Electrical Performance of 180kV HVDC Submarine Cable System (180kV HVDC 해저케이블 기계적/전기적 특성 평가)

  • Kim, N.Y.;Lee, T.H.;Lee, S.J.;Ji, B.K.;Kim, J.N.;Jeon, S.I.;Yun, H.S.;Joung, S.K.;Kang, C.H.;An, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.616-618
    • /
    • 2007
  • This paper describes the mechanical and electrical test on HVDC submarine cable, Flexible Repair Joint and termination for 180kV. This HVDC submarine cable was manufactured using LS cable's unique skill and would be applied the HVDC submarine cable system in korea. The performance test consist of mechanical test and electrical test. The tensile bending test and tensile test was done as the mechanical test and Electrical test is DC voltage and Impulse test. The tensile bending test carried out 6 times(double of specified times) for maximum reliability. The DC test voltage is $\pm$400kV/1hr. We estimate the lower limit of DC breakdown voltage is 600kV. The impulse test voltage is $\pm$800kV/10shots. The type of developed cables is the MI type. Its insulation consist of paper tapes impregnated with a high viscosity oil. The development of new HVDC cable is available for HVDC underground or submarine power transmission. The developed HVDC cable, FRJ and termination have passed the mechanical and electrical test successfully and showed excellent performance.

  • PDF

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.