• Title/Summary/Keyword: HV%

Search Result 1,031, Processing Time 0.024 seconds

Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF (초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과)

  • Joo, Yunkon;Yoon, Jaehong;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

Properties of hydroxyapatite sintered body added with plasticizer (Hydroxyapatite 소결체의 가소제 첨가에 따른 특성)

  • Ryu, Su Chark;Kim, Jae Kyu;Kim, Seung Hyeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.167-172
    • /
    • 2019
  • The strength (MPa), hardness (Hv), shrinkage (%) and biological properties of the HAp were measured by using an organic plasticizer which facilitates the molding and heat treatment. Mechanical properties such as compressive strength, bending strength and hardness were increased with increasing amount of plasticizer, but mechanical properties were decreased when plasticizer was added more than 7 %. This is because addition of the plasticizer above the allowable value causes cracking during molding, and such cracks promote the generation of microcracks and pores at the time of sintering, resulting in a decrease in mechanical properties. As a result of the antimicrobial activity test, no bacteria were detected regardless of the addition amount of plasticizer.

Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance (내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

Immiscibility, nucleation and mechanical properties in the lithia-baria-silica system

  • Ertug, Burcu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • The current work investigates the effects of nucleation heat treatments, on the microstructure and mechanical properties of a novel silicate glass in $Li_2O-BaO-SiO_2$ system with 1 mol% $P_2O_5$ as nucleating agent. As-cast glass was exposed to nucleation heat treatments at $490-550^{\circ}C$ for 1-3 h. The microstructural examination was performed by SEM/EDS. The highest Vickers microhardness was determined to be 650 Hv for the sample heat treated at $550^{\circ}C$ for 1 h. The increase in the nucleation time also affected Vickers microhardness and the highest one was determined to be 600 Hv after nucleation for 3 h. The fracture toughness, $K_{IC}$ reached $2.51MPa.m^{1/2}$ after nucleation at $550^{\circ}C$ for 1 h. The nucleation temperatures had a more pronounced effect on the fracture toughnesses in comparison to nucleation times. The indentation toughness data was used to determine Weibull parameters from Ln ln [1/(1-P)]-$lnK_{IC}$ plots. Weibull modulus, m of the samples nucleated at 500, 510, 530, $550^{\circ}C$ for 1h. and $540^{\circ}C$ for 2 h. were determined similarly to be 3.8, 3.5, 4.7 and 3.9, respectively. The rest of the samples indicated higher Weibull moduli, which may be attributed to the formations of microcracks due to the mismatch in between newly formed crystals and remaining glassy matrix.

A Study on the High Temperature Gas Nitriding Heat Treatment of STS 347 and STS 310S Austenitic Stainless Steel (STS 347 및 STS 310S 오스테나이트계 스테인리스강의 고온 가스질화 열처리 특성 연구)

  • Yoo, Dae Kyoung;Kong, Jung Hyun;Lee, Hea Joeng;Sung, Jang Hyun;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.708-712
    • /
    • 2008
  • The influence of high temperature gas nitriding (HTGN) in STS347 and STS310S steels was experimentally investigated. The HTGN was carried out at $1,050^{\circ}C{\sim}1,150^{\circ}C$ for 10 hrs in a gaseous atmosphere containing $1kg/mm^2$ of nitrogen. After HTGN, fine precipitates of $Cr_2N$ and NbN appeared in austenite on the surface of STS 347, while nitrogen pearlite, which was layeredof $Cr_2N$ and austenite alternatively, appeared in austenite on the surface of STS 310S. The surface hardness of HTGN-treated, STS 347 and STS 310S specimens was 250~360 Hv and 270~400 Hv, respectively, depending on the temperature of HTGN. The nitrogen content was analyzed 1.4 wt% and 1.6 wt% at the surface layer of STS 347 and STS 310S steels, respectively. In addition, an improvement in the corrosion resistance of HTGN treated specimens was observed.

Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping (극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향)

  • Ji, Min-Ki;Noh, Yeonju;Kang, Hyun-Hak;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method (용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

Evaluation of Harmless Crack Size of SCM822H Steel according to Shot Ball Size (쇼트 볼의 크기에 따르는 SCM822H 강의 무해화 균열크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.725-731
    • /
    • 2023
  • In this study, the harmless crack size was evaluated using carburized, quenched-tempered SCM822H steel. The possibility of detecting cracks that reduce the fatigue limit by non-destructive inspection was evaluated. The conclusions obtained are as follows. The retained austenite of surface was reduced by SP. About 35% and 65% of the retained austenite on the surface were transformed into strain-induced martensite, increasing the hardness by 79HV and 122HV over the as-received material. The maximum compressive residual stresses introduced on the surfaces were -695 MPa and -688 MPa, respectively. The fatigue limit increased by 1.48 times and 1.67 times, respectively, compared to the as-received material. The harmless crack size of SP specimen was determined differently depending on the shot ball size.

Effect of Carburizing Heat Treatment Process on Microstructure and Residual Stress Changes in AISI 9310 Steel. (AISI 9310강의 침탄열처리 경로가 조직 및 잔류응력 변화에 미치는 영향)

  • Youngchul Jeong;Joohyeon Bae;Jaeman Park;Seungjun OH;Janghyun Sung;Yongsig Rho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • In this study, the carburizing heat treatment process used in aircraft gear manufacturing was compared with the general carburizing heat treatment process using AISI 9310 steel. The process of carburizing followed by slow cooling, and then quenching after austenitizing(Process A) showed less compressive residual stress and less retained austenite in the surface layer compared to the process of quenching directly after carburizing(Process B). In prpcess B, there was a large amount of retained austenite when quenched immediately after carburization, and when treated with subzero, martensite rapidly increased and the compressive residual stress increased significantly, but at the same time, there is a risk of cracking due to severe expansion in volume. Therefore, in the case of aviation parts, it is believed that a step-by-step heat treatment cycle was adopted to ensure stability against heat treatment cracks. As a result of the final tempering after sub-zero treatment, the A process specimen showed a deeper effective case depth and HV700 depth and a higher hardness value above HV700 than the B process specimen.

The Effect of Feeding Mixed-sowing Winter Forage Crop and Whole Crop Barley Silage on Feed Intake, Nutrient Digestibility and Blood Characteristics in the Korean Black Goats (동계사료작물과 혼파한 총체보리 Silage 급여가 흑염소의 사료섭취량, 영양소 소화율 및 혈액성상에 미치는 영향)

  • HwangBo, Soon;Jo, lk-Hwan;Jung, Gi-Woung;Kim, Won-Ho;Lim, Young-Cheol;Kim, Jong-Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • This experiment was carried out to estimate the nutritive value of mixed-sowing winter forage crop and whole crop barley by investigating the effects of feeding mixed-sowing winter forage crop and whole crop barley in KBG (Korean black goat) on feed intake, average daily body weight gain, nutrient digestibility and nitrogen retention. The 12 male KBG were divided into four experimental groups - i.e. T1: barley silage added group, T2: mixed-sowing hairy vetch silage added group, T3: mixed-sowing field peas added silage, T4: mixed-sowing Italian rye grass added silage group. Three KBG per each treatment were allotted into individual metabolic cages by Latin-square design. The results from this study are as follow. The DMI (dry matter intake) and organic matter intake in T4 were significantly (p<0.05) higher than those in T1 and T3 and crude protein intake in T4 also recorded the highest among treatments (p<0.05). The highest values in intakes of ADF and NDF were observed in T4 followed by T2, T1 and T3 in order. The average daily body weight gains in T4 and T2 were significantly (p<0.05) higher than those in TI and T3. The dry and organic matter digestibility in T2 and T4 were significantly (p<0.05) higher than those in T1 and T3. The crude protein digestibility in T1 was significantly (p<0.05) lower than those in T2 and T4. The nitrogen intakes in T2 and T4 were significantly (p<0.05) higher than those in T3. The results obtained from this study suggested that the feeds supplemented with whole crop barley with hairy vetch and Italian rye grass mixture silage increased KBG productivity resulted from increases in feed intake, nutrient digestibility and nitrogen retention.