• Title/Summary/Keyword: HTS solenoid

Search Result 37, Processing Time 0.027 seconds

Measurement and Numerical Analysis of AC Loss in the HTS Pancake Coil and the HTS Solenid Coil (고온초전도 팬케이크 코일과 솔레노이드 코일의 교류손실 측정 및 수치해석)

  • Park Myung-Jin;Lee Sang-Soo;Lee Seung-Wook;Cha Guee-Soo;Lee Ji-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.732-738
    • /
    • 2004
  • In this paper, we constructed 13 turns pancake coil and solenoid coil with HTS tape and measured AC losses of the pancake coil. The critical current of the pancake coil and the solenoid coil were 80A and 109A, respectively. To compare measured AC losses of the two coils, we carried out numerical analysis using 2-D FEM program for manufactured coils. This paper presents current density distribution, flux density distribution and AC losses of the pancake coil and the solenoid. As a result, we obtained that current density distribution was closely related to the orientation of magnetic field and distribution of AC losses were also closely related to the perpendicular component of flux density distribution in coil. The calculated AC losses of the two coils showed good agreement with measured AC losses and AC losses of the pancake coil was about 9 times bigger than that of the solenoid coil under the same turns and length.

Characteristics of Prototype Solenoid for Basic Design of DC Reactor Type SFCL (유도형 고온초전도한류기의 DC 리액터 설계를 위한 솔레노이드 특성실험)

  • 김민철;안민철;이승제;김영식;김진기;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper deals with the characteristics of a prototype solenoid for basic design of DC reactor type superconducting fault current limiter (SFCL). The prototype high-Tc Super-conducting (HTS) solenoid was manufactured with 4 stacked Bi-2223 tape. The critical currents were measured with respect to the number of stacks. In order to test the safety of HTS solenoid in quenched state, the transport tests of AC over-current were performed. These experimental results could be applied to the basic design of HTS DC reactor for SFCL effectively.

  • PDF

Fabrication of the HTS Solenoid for DG Reactor of 6.6kV/200A Inductive Superconducting Fault Current Limiter (6.6kV00A급 유도형 초전도한류기의 DC 리액터용 고온 초전도 솔레노이드의 제작)

  • 김현석;안민철;이승제;이안수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.230-233
    • /
    • 2003
  • This paper deals with the fabrication of high temperature superconducting(HTS) solenoid for DC reactor of 6.6㎸/200A inductive superconducting fault current limiter(SFCL). The winding machine which is suitable to wind HTS wire was manufactured. The proper inductance was calculated by circuit simulation and G10-FRP bobbin was fabricated with this inductance, HTS solenoid was wound by using the winding machine. The V-I characteristic of completed DC reactor in sub-cooled nitrogen(65K) was measured. The full quench current of this magnet is about 490A.

  • PDF

Shape Optimization to Improve the Critical Current of HTS Solenoid (고온초전도 솔레노이드의 임계전류 향상을 위한 형상 최적화)

  • 강준선;이준호;나완수;박일한;권영길;손명환;김석환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.274-276
    • /
    • 2002
  • To enhance the critical current of superconducting coil, the magnetic field experienced by superconductors in a coil should be minimized. This is true for both low $T_{c}$ and high $T_{c}$ superconductors, and the difference between the two lays in their isotropic/an-isotropic characteristics. In this paper, we propose a shape optimization algorithm to reduce radial magnetic field components in HTS solenoid to enhance the critical current of a solenoid. In the algorithm, finite element method and continuum shape design sensitivity formula were employed. The objective function is to minimize the maximum radial magnetic fields in a solenoid with a constraint of constant solenoid volume condition. In this paper, the details on algorithm are introduced and the calculated optimized shapes are presented.

  • PDF

Quench and Recovery Characteristics of Non-Inductively Wound HTS Coils with Various Winding (권선방식에 따른 무유도 권선형 HTS 코일의 퀜치 및 회복 비교특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Kim, Young-Jae;Choi, Suk-Jin;Hwang, Young-Jin;Kim, Won-Cheol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • To limit fault current in a power system, superconducting fault current limiters (SFCLs) using high temperature superconducting (HTS) coils have been developed by many research groups so far. Non-inductive winding of HTS coils used for SFCLs can be classified into solenoid winding and pancake winding. Each of winding is expected to have different quench and recovery characteristics because the structure of solenoid winding differs from pancake winding's. Therefore it is important to the SFCLs application to investigate characteristics of each winding. In this paper, we deal with quench and recovery characteristics of four kinds of winding : solenoid winding, pancake winding without spacers, and with spacers of 2 and 4 mm thickness. In order to obtain quench and recovery parameters of coils, short circuit tests were performed in liquid nitrogen.

Comparison of Magnetic Field and AC Losses in Solenoid Coil and Pancake Coil with HTS tape

  • Park, Myungjin;Lee, Kwangyoun;Jungwook Sim;Gueesoo Cha;Lee, Jikwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.97-101
    • /
    • 2003
  • When HTS tapes are used in power application, they are used by winding form, such as, a pancake and a solenoid. When AC current is applied to the coil, Ac magnetic field is generated in winding. This AC magnetic field acts as an external magnetic field and makes loss. In this paper the radial magnetic field component ($B_r$) and the axial magnetic field component ($B_z$) in a pancake and a solenoid were calculated by numerical analysis method and compare with measured value. AC losses of a short sample were calculated by Norris equation and n numerical analysis based on Brandt equation. AC losses of the pancake coil and the solenoid coil were also calculated.

Analysis of AC losses in HTS coils by temperature variations

  • Kim, Yungil;Lee, Ji-Kwang;Lee, Seyeon;Kim, Woo-Seok;Lee, Siyoung;Choi, Kyeongdal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.50-54
    • /
    • 2018
  • We analyzed the temperature dependency of the AC losses in high temperature superconducting (HTS) coils. In the case of a short sample of an HTS tape, the magnetization loss at 4.2 K could be higher than the one at 77 K for a same transport current. It happens when the perpendicular magnetic field is above a certain magnitude. The AC loss characteristics of solenoidal coils have been analyzed at the temperatures of 65 K and 77 K. They were categorized by the aspect ratios. The operating current of a solenoid was normally set about 70 % of the critical current. An HTS solenoid with the same operating current of 77 K causes larger AC losses at 65 K in the most cases of the HTS solenoids. We also analyzed the AC loss characteristics due to the temperature variations for three types of superconducting magnetic energy storages. Two of them were solenoidal types and the other was toroidal type. The results showed the tendency for the coils to have higher AC losses at lower temperature with the same operating currents and scenarios.

Fabrication and Characteristic Test of the DC Reactor for 6.6kV /200A Inductive Superconducting Fault Current Limiter (6.6kV/200A급 유도형 초전도한류기용 DC 리액터의 제작 및 특성 실험)

  • 안민철;이승제;강형구;배덕권;김현석;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.36-40
    • /
    • 2003
  • Inductive superconducting fault current limiter(SFCL) with DC reator rated on 6.6k $V_{rms}$/200 $A_{rms}$ has been developed in Yonsei University. The development of the DC reactor is the key technology in this type SFCL. This paper deals with the fabrication and characteristic test of the DC reactor. For the development of this magnet, the winding machine for high-Tc superconducting solenoid was manufactured. Using this machine, a large-scale HTS solenoid using Bi-2223 tape was fabricated successfully. This coil has 5 layers which are connected in series each other. The inductance of the DC reactor coil is 84mB. The cooling system was the sub-cooled nitrogen whose temperature is about 65K. The characteristic test of the coil was performed. The full quench current of this coil is about 490A.90A.

A Study of PBD and BD Voltage Characteristics in the Simulate Electrode System of Solenoid Type High Temperature Superconducting Coils (솔레노이드형 고온초전도코일 모의전극계에서 부분 및 완전파괴전압특성 연구)

  • 석복렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.94-98
    • /
    • 2002
  • The Partial breakdown (PBD) and complete breakdown (BD) voltage characteristics in a composite insulation system of glass fiber reinforced plastics (GFRP) and liquid nitrogen are investigated to find the PBB and BD characteristics in solenoid type high temperature superconducting (HTS) coils at quench. The electrode system used is made from a coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers, and is immersed in liquid nitrogen. A heater is mounted inside the coil electrode to generate boiling which occurs on quenched superconducting coils. The experimental results show that: (1) breakdown voltages are affected severely by the risetime of the applied voltage and the PBD inception voltage, (2) two kinds of BD mechanisms are found depending on the shape of the spacer, length of cooling channel and heater power.

Study of a Superconducting Switch and Superconducting Power Supply for the Charging of Superconducting Magnets (고온초전도자석 충전용 초전도 스위치 및 전원장치에 관한 연구)

  • 배덕권;안민철;김영식;김호민;이찬주;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.318-321
    • /
    • 2002
  • Superconductivity has various applications in the whole industry such as the generation of high magnetic field for medical care and diagnosis, the lossless power transmission, environment-friendly vehicles and clean energy storage systems. This paper deals with the High-Tc superconducting(HTS) power supply using heater-triggered switch for the charging of the superconducting magnets. HTS superconducting power supply consists of two heaters, an electromagnet, and Bi-2223 solenoid and Bi-2223 pancake is used as a superconducting load, similar to real HTS magnet. The timing sequential control of two heaters and an electromagnet is an important factor to generate pumping- current in the Bi-2223 load. The thermal analysis of switching parts of the Bi-2223 solenoid according to the heater input was carried out. Based upon the analysis, the 0.8A of heater current were optimally derived. The maximum pumping current reached 1.7A.

  • PDF