• Title/Summary/Keyword: HTS Coil

Search Result 203, Processing Time 0.03 seconds

Estimation of Bubble Behavior and PD Initiation Voltage in the Simulated Electrode System of High Temperature Superconducting Coil (고온초전도코일 모의전극계에서 기포거동 및 부분방전개시전압의 추정)

  • 석복렬;최명준;김용한;김진수;김종구
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2001
  • This paper deals with the numerical estimation of the bubble behavior and the partial discharge (PD) initiation voltage on the basis of electric field calculation with the coaxial coil layer-to-cylindrical electrode system for the simulation of high temperature superconducting coils. The theoretical results of bubble behavior and the PD initiation voltages show fairly good agreement with the experimental results.

  • PDF

Analysis on the over current characteristics of metal insulated HTS coil (금속 절연 초전도 코일의 과전류 특성 해석)

  • Cho, Jeonwook;Sim, Kideok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1110-1111
    • /
    • 2015
  • 초전도 코일의 안정성(stability)을 향상시키기 방법으로 초전도 자석의 턴(turn) 사이의 절연을 없애는 무절연 코일(no-insulation coil) 및 금속 테이프를 같이 권선하는 금속절연 코일(metal insulation coil)이 제안되어 활발히 연구되고 있다. 본 논문에서는 고온초전도 코일의 열적, 전기적 메카니즘을 분석하기 위한 FEM 모델을 제시하고, 이를 사용하여 �치 시 고온 초전도 코일의 안정성 향상 정도를 해석한다.

  • PDF

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

Parameter tuning of a large-scale superconducting wind power generator for applying a flux pump (플럭스 펌프 적용을 위한 대용량 초전도 풍력발전기 파라미터 튜닝)

  • Sung, Hae-Jin;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1106-1107
    • /
    • 2015
  • A flux pump (FP) can inject the DC current into high temperature superconducting (HTS) field coils of a HTS rotating machine without slip ring and current lead. However, it has limits to improve the value of DC current, and has time constants of DC current according to inductances of the HTS field coils. When a large-scale HTS generator with the FP is designed, a proper point about the inductance, field current, and time constant is demanded to decide parameters of the generator. In this paper, a parameter tuning skill of a large-scale superconducting wind power generator for applying a FP has been proposed. The design of the FP has been fixed, and 12 MW HTS generators have been variously designed by adjusting parameters related with the inductance of the HTS field coil. The induced current values have been calculated based on the FP design. The time constants of the induced currents depending on the DC current values and inductances of the generator have been represented. The results of the parameter tuning of the HTS generator have been discussed in detail.

  • PDF

Connection Algorithm Proposal of Real Time Digital Simulator with Miniaturized HTS SMES (소형 HTS SMES와 실시간 전력계통 시뮬레이터의 연계 알고리즘 제안)

  • Kim, A-Rong;Kim, Gyeong-Hun;Kim, Kwang-Min;Park, Min-Won;Yu, In-Keun;Sim, Ki-Deok;Kim, Seok-Ho;Seong, Ki-Chul;Park, Young-Il;Kim, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.96-101
    • /
    • 2010
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.

Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator (공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구)

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

Shape Optimization to Improve the Critical Current of HTS Solenoid (고온초전도 솔레노이드의 임계전류 향상을 위한 형상 최적화)

  • 강준선;이준호;나완수;박일한;권영길;손명환;김석환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.274-276
    • /
    • 2002
  • To enhance the critical current of superconducting coil, the magnetic field experienced by superconductors in a coil should be minimized. This is true for both low $T_{c}$ and high $T_{c}$ superconductors, and the difference between the two lays in their isotropic/an-isotropic characteristics. In this paper, we propose a shape optimization algorithm to reduce radial magnetic field components in HTS solenoid to enhance the critical current of a solenoid. In the algorithm, finite element method and continuum shape design sensitivity formula were employed. The objective function is to minimize the maximum radial magnetic fields in a solenoid with a constraint of constant solenoid volume condition. In this paper, the details on algorithm are introduced and the calculated optimized shapes are presented.

  • PDF

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

Study on Coil Insulation of HTS Transformer with Simulated Electrode (고온초전도 코일의 모의 전극계에서의 절연연구)

  • 정종만;백승명;이정원;곽동순;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.420-423
    • /
    • 2002
  • In this paper the characteristics of surface flashover for high temperature superconducting transformer(HTS) was discussed. The transformer, will be developed in the shell type with double pancake coil, isn't developed yet in the world. We conducted experiment of surface flashover that could occur in the windings of the transformer. First, we distinguished the surface flashover with electrode alignment into two type, such as parallel and vertical, and then compared with each characteristics of surface flashover. And the surface flashover with metallic particle was tested, it was also affected by the particle position. .

  • PDF

Fabrication and Test Results of an HTS Magnet with Pancake Windings Excited by Multiple Power Sources (별도전원으로 여자되는 팬케이크 권선형 고온초전도 마그넷의 제작과 특성 시험)

  • Lee, K.Y.;Hun, K.M.;Lee, Y.S.;Lee, H.J.;Cha, G.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.384-389
    • /
    • 2008
  • The cental magnetic field of an HTS magnet consisting of pancake windings can be increased if the magnet is excited by multiple power sources. Multiple power sources enable all pancake windings to conduct their critical currents. The HTS magnet consisting of pancake windings was excited by separate power sources in this paper. Critical currents of each pancake winding were determined by using optimization technique. Fabrication of the BSCCO magnet consisting of 10 pancake windings is described and test results of the BSCCO magnet are given. Central magnetic field and perpendicular magnetic field of the magnet excited by multiple power sources were compared with those of the magnet excited by a single power source.