• 제목/요약/키워드: HTS Coil

검색결과 203건 처리시간 0.028초

Numerical analysis on the critical current evaluation and the correction of no-insulation HTS coil

  • Bonghyun Cho;Jiho Lee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권1호
    • /
    • pp.16-20
    • /
    • 2023
  • The International Electrotechnical Commission (IEC) 61788-26:2020 provides guidelines for measuring the critical current of Rare-earth barium copper oxide (REBCO) tapes using two methods: linear ramp and step-hold methods. The critical current measurement criterion, 1 or 0.1 μV/cm of electric field from IEC 61788-26 has been normally applied to REBCO coils or magnets. No-insulation (NI) winding technique has many advantages in aspects of electrical and thermal stability and mechanical integrity. However, the leak current from the NI REBCO coil can cause distortion in critical current measurement due to the characteristic resistance which causes the radial current flow paths. In this paper, we simulated the NI REBCO coil by applying both linear ramp and step-hold methods based on a simplified equivalent circuit model. Using the circuit analysis, we analyzed and evaluated both methods. By using the equivalent circuit model, we can evaluate the critical current of the NI REBCO coil, resulting in an estimation error within 0.1%. We also evaluate the accuracy of critical current measurement using both the linear ramp and step-hold methods. The accuracy of the linear ramp method is influenced by the inductive voltage, whereas the accuracy of the step-hold method depends on the duration of the hold-time. An adequate hold time, typically 5 to 10 times the time constant (τ), makes the step-hold method more accurate than the linear ramp method.

100 마력급 고온초전도 전동기의 열적설계에 관한 연구 (A Study on the Thermal Design of the 100 hp High Temperature Superconductin)

  • 서무교;조영식;손명환;김석환;백승규;권영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.732-734
    • /
    • 2002
  • The rotor thermal analysis consists of determining the heat load to the rotor, sizing the cryogenic system, and ensuring that the HTS rotor will operate at the design goal of 30 K. The heat load to the rotor is due to heat conduction through the torque tubes, current leads, instrumentation. and radiation from the thermal shield and the end caps. Coil operating temperature is determined from the coil losses and the heat transport to the coolant. An FEM thermal conductivity model is developed to allow calculation of heat transport in HTS field coil according to the heat exchanger shape and coolant feeding method. The losses determine the size of the cryocooler.

  • PDF

초고속 자기부상열차 적용을 위한 초전도 하이브리드 전자석 시작품의 설계 (Design of Prototype Superconducting Hybrid Electromagnet for High Speed Maglev)

  • 이창영;강부병;조정민;한영재;주승열;황영진;조현철;장재영;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.1-4
    • /
    • 2011
  • This paper deals with the design and fabrication of prototype superconducting hybrid electromagnet(SH-EM) for EMS (Electromagnetic suspension)-based Maglev. The design requirements are based on the normal conducting EM used in the German high-speed Maglev. From the MMF-Levitation force curves simulated by FEM analysis, the required MMF by superconducting coil is suggested. As an experimental test setup to demonstrate the SH-EM, the experimental SH-EM with HTS coil cooled in $LN_2$ is fabricated. From the expected operating current of the HTS coil, the levitation performance of the SH-EM is estimated.

솔레노이드형 고온초전도코일 모의전극계에서 부분 및 완전파괴전압특성 연구 (A Study of PBD and BD Voltage Characteristics in the Simulate Electrode System of Solenoid Type High Temperature Superconducting Coils)

  • 석복렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.94-98
    • /
    • 2002
  • The Partial breakdown (PBD) and complete breakdown (BD) voltage characteristics in a composite insulation system of glass fiber reinforced plastics (GFRP) and liquid nitrogen are investigated to find the PBB and BD characteristics in solenoid type high temperature superconducting (HTS) coils at quench. The electrode system used is made from a coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers, and is immersed in liquid nitrogen. A heater is mounted inside the coil electrode to generate boiling which occurs on quenched superconducting coils. The experimental results show that: (1) breakdown voltages are affected severely by the risetime of the applied voltage and the PBD inception voltage, (2) two kinds of BD mechanisms are found depending on the shape of the spacer, length of cooling channel and heater power.

고온초전도마그네트 내부의 스트레인에 의한 임계전류밀도 감소 계산 (Calculation of Critical Current Density Degradation in the HTS Magnet due to Mechanical Strain)

  • 이인규;나완수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.260-263
    • /
    • 1997
  • In this paper, we describe the mechanical strain effects on the critical current density of HTS (BSCCO) pancake-type-magnet. Firstly the strain of pancake coil is calculated in terms of coil length, which is also a function of angle, and then the critical current density degradation due to strain is calculated along the coil. We assumed that the critical current density degradation pattern is same with that of $Nb_{3}Sn$. We also modelled the effects of magnetic field on the critical curent degradation, and the results are compared with those with null magnetic field.

  • PDF

전도냉각 고온초전도 SMES 절연용 AlN의 전기적 및 기계적 특성 연구 (A Study on the Electrical and Mechanical Properties of AlN for Insulation of a Conduction-Cooled HTS SMES)

  • 최재형;곽동순;천현권;민치현;김해종;정순용;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.957-958
    • /
    • 2007
  • The conduction-cooled HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

  • PDF

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

자속구속형 전류제한기의 초기 사고전류 제한시점 변화 (Variance of Initial Fault Current Limiting Instant in Flux-lock Type SFCL)

  • 박충렬;임성훈;박형민;최효상;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.269-275
    • /
    • 2005
  • A flux lock-type SFCL consists of two coils which are wound in parallel each other through an iron core, and a HTSC thin film connects in series with coil 2. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between coil 1, coil 2. When a fault occurs, the fault current in the HTS thin film exceeds the critical current so that resistance is generated in the HTS film, and thereby the fault current is limited by an instant rise in the impedance of the flux-lock type SFCL. We investigated he variances of initial fault current limiting instant according to the ratio of inductance of coil 1 and coil 2 in the flux-lock type SFCL. It was confirmed from experiments that the initial fault current limiting instant in the subtractive polarity and additive polarity windings were faster as the ratio of coil 2' inductance for coil 1's inductance increased. The 1st peak of fault current in case of the subtractive polarity winding was higher as the ratio of coil 2's inductance for coil 1's inductance increased. On the other hand, in case of the additive polarity winding, the 1st peak of fault current was lower.

고온초전도 동기 전동기 (High Temperature Superconducting Synchronous Motor)

  • 조영식;흥정표;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.574-576
    • /
    • 2001
  • This paper deals with High Temperature Superconducting (HTS) Motor, which have two characteristics: the HTS magnet with iron plates as field coil, and the solid nitrogen $(SN_2)$ as a cryogen. The HTS magnet has iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. The HTS magnet with iron plates, magnet optimized current distribution, and initial magnet are presented through 3 Dimensional Finite Element Analysis (3D FEA), manufacturing and testing these magnets. And, it is employed $SN_2$ for keep the operating temperature of HTS synchronous motor. To make the liquid nitrogen $(LN_2)$ of $SN_2$, Gas helium (GHe) passes into the heat exchanger and cools its own temperature. Two types of heat exchangers are designed and manufactured to make the $SN_2$, and each of the temperature characteristics is compared.

  • PDF

1,500 A, 400 mH급 고온초전도 직류 리액터 설계 (Design of the 1,500 A, 400 mH class HTS DC reactor)

  • 김광민;김성규;박민원;하홍수;심기덕;손명환;이헌주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1114-1115
    • /
    • 2015
  • This paper describes the design of toroid-type HTS DC reactor magnet. Target operating current and inductance of the HTS DC reactor are 1,500 A and 400 mH, respectively. The HTS DC reactors were designed through electromagnetic analysis and 3D CAD program. And, we analyze the operating performance of the Double Pancake Coil module for the 1,500 A, 400 mH HTS DC reactor magnet under the liquid nitrogen condition.

  • PDF