• 제목/요약/키워드: HTS(High Temperature Superconducting) Cable

검색결과 123건 처리시간 0.025초

고온초전도 케이블의 전자계 해석 (Electromagnetic Field Analysis Of High Temperature Superconducting Cable)

  • 조영식;홍정표;정종만;조전욱;성기철;권영길;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.60-62
    • /
    • 2000
  • It is widely acknowledged that the value of critical current in High Temperature Superconducting (HTS) tape has a great influence on B. Therefore, when HTS cable is designed, a method to reduce the B should be considered in order to improve the capacity. This paper deals with the influence of the space between each HTS tape by using 2D analytical method. From the analysis results, it is found that the decrease of the space causes the decrease of B. Moreover, another HTS cable, which has a very small space, is analyzed by 3D analytical method and it is manufactured. The validity of these analysis results are verified by comparison with experimental results.

  • PDF

AC loss comparison of Bi-2223 and coated conductor HTS tapes under bending

  • Kim, Hae-Joon;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Jae-Ho;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Soo-Gil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.41-45
    • /
    • 2007
  • Superconductor is developed for applications in high-power devices such as power-transmission cables, transformers, motor and generators. In such applications, HTS tapes are subjected to various kinds of stress or strain. AC loss is also important consideration for many large-scale superconducting devices. In the fabrication of the devices, the critical current $(I_c)$ of the high temperature superconductor degrades due to many reasons including the tension applied by bending and thermal contraction. These bending or tension reduces the $I_c$ of superconducting wire and the $I_c$ degradation affects the AC loss of the wire. The $I_c$ degradation and AC loss (self field loss) of Bi-2223 HTS and Coated conductor were measured under tension and bending conditions at 77K and self-field.

다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산 (Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length)

  • 이지광;차귀수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권1호
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Key parameters of toroidal HTS coil for a superconducting magnetic energy storage system

  • Miyeon, Yoon;Jinwoo, Han;Ji-Kwang, Lee;Kyeongdal, Choi;Jung Tae, Lee;Seungyong, Hahn;Woo-Seok, Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.50-54
    • /
    • 2022
  • High temperature superconducting (HTS) magnets for large-capacity energy storage system need to be composed of toroid magnets with high energy density, low leakage magnetic fields, and easy installation. To realize such a large capacity of a toroid HTS magnet, an HTS cable with large current capacity would be preferred because of the limited DC link voltage and instantaneous high power required for compensation of the disturbance in the power grid. In this paper, the optimal operating strategies of the SMES for peak load reduction of the microgrid system were calculated according to the load variation characteristics, and the effect of compensation of the frequency change in microgrid with a SMES were also simulated. Based on the result of the simulation, key design parameters of SMES coil were presented for two cases to define the specification of the HTS cable with large current capacities for winding of HTS toroid coils, which will be need for development of the HTS cable as a future work.

3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구 (A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation)

  • 이근준;황시돌;이현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

22.9kV 고온 초전도 케이블.초전도 한류기 스마트 그리드 적용을 위한 초전도 시범사업 (Introduction of The First Demonstration Project for the Application of HTS Cable and SFCL to Real Smart Grid in South Korea)

  • 양병모;박진우;이승렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.34-38
    • /
    • 2010
  • Until now some countries including South Korea have made big progress and many efforts in the development of high temperature superconductor (HTS) power equipments. Especially, HTS Cable and superconducting fault current limiter (SFCL) are the strongest candidates among them from the viewpoint of applying to real grid. In South Korea, HTS cable and SFCL have been installed in test fields and tested successfully at Gochang PT Center of KEPCO. In order to meet practical requirements and be feasible in real grid, a demonstration project for HTS cable and SFCL systems, called GENI(green superconducting electric power network at Icheon substation) project, has been initiated to install 23kV HTS cable and SFCL systems in a utility network in South Korea since 2008. Namely, it says the first demonstration project for the application HTS system to real smart grid in South Korea. This paper presents the design and the application plan of the 22.9kV HTS cable and SFCL in 154kV Icheon substation in South Korea with the viewpoint of applying in Smat Grid.

다층 고온 초전도케이블에서의 전류분류 및 손실 계산 (Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable)

  • 이승욱;차귀수;이지광;한송엽
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

Electrical Insulation Design of a 154kV-Class HTS Power Cable

  • Choi, Jin-Wook;Kwag, Dong-Soon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권2호
    • /
    • pp.25-28
    • /
    • 2009
  • A 154kV class high-temperature superconducting (HTS) power cable system is developing in Korea. For insulation design of this cable, it is important that study on cryogenic electrical insulation design to develop the cold dielectric type HTS cable because the cable is operated under the high voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the cold dielectric type HTS cable adopting the partial discharge-free design under ac stress, based on the experimental results such a ac breakdown strength, partial discharge inception stress, $V_{ac}$-t characteristics, $V_{imp}$-n characteristics, and impulse breakdown strength of liquid nitrogen/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized liquid nitrogen.

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

초전도케이블이 병입된 계통의 고장에 대한 보호협조 검토기법 (A study result on coordinative protection method of HTS cable implemented distribution system)

  • 이현철;양병모;이근준
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.700-704
    • /
    • 2011
  • This paper proposes a coordinative protection study results of 22.9kV HTS(High-Temperature Superconducting) cable implemented distribution system. HTS cable can provide about 5 times larger transfer capacability compare to conventional XLPE cable, however, it has different heat characteristic so called quench. This paper presents the simulation results on Ichun substation HTS cable which connects main transformer and 22.9kV bus. Various expected fault cases are considered and discussed to examine whether conventional protection scheme is effective to protect both of existing facilities and HTS cable. With the results of simulation, conventional protection scheme can be used if instantaneous element and time inverse elements could be adjusted with proper time coordination. Internal temperatures of HTS cable conductor in safe region with proper protection without quench. This results are to be demonstrated by the field test and will be implemented in Ichon substation HTS cable protection and control system.