• Title/Summary/Keyword: HREELS

Search Result 6, Processing Time 0.027 seconds

Surface Phonons studied by High Resolution Energy Loss Sppectroscoppy (HREELS)

  • Oshima, Chuhei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1992.07a
    • /
    • pp.17-17
    • /
    • 1992
  • In this talk, our recent progress in experiment study on microscopic surface phonons has been reviewed. After the brief introduction concerning the concept of surface phonons, exprimental apparatus of HREELS and the principle of the measurment for surface phonon dispersions, I show the experimental data of some solide surfaces. The following points are discussed ; (1) lattice dynamical analysis of the phonon dispersions of some transi tion metal carbide (100) surfaces indicates the large changes in the force constant near the surface, which is consistent wi th a rippled structure of a topmost layer. (2) the phonon dispersions of a graphite overlayer show the modified phonon structure, which indicates that the thickness of the overlayer is one atomic layer, and in addition, the electronic structure is also modified. (3) The phonon structure of $LaB_6$ (100) surface is discussed. Lastly I telJ about new technology of extreme high vaccum less than $10^{-10}$ Pa.EX> Pa.

  • PDF

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Interaction of oxygen with the ordered Ni3Al(111) alloy surface: adsorption and oxide islands formation at 800 K and 1000 K (Ordered Ni3Al(111) 합금표면과 산소와의 상호작용 : 800 K와 1000 K에서의 흡착과 oxide islands 형성연구)

  • Kang, B.C.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.322-329
    • /
    • 2007
  • The interaction of oxygen with the ordered $Ni_3Al(111)$ alloy surface at 800 K and 1000 K has been investigated using LEED, STM, HREELS, UPS, and PAX. The clean $Ni_3Al(111)$ surface exhibits a "$2{\times}2$" LEED pattern corresponding to the ordered bulk-like terminated surface structure. For an adsorption of oxygen at 800 K, LEED shows an unrelated oxygen induced superstructure with a lattice spacing of $2.93\;{\AA}$ in addition to the ($1{\times}1$) substrate spots. The combined HREELS and the UPS data point to an oxygen chemisorption on threefold aluminum sites while PAX confirms an islands growth of the overlayer. Since such sites are not available on the $Ni_3Al(111)$ surface, we conclude the buildup of an oxygen covered aluminum overlayer. During oxygen exposure at 1000 K, however, we observe the growth of ${\gamma}'-Al_2O_3$ structure on the reordered $Ni_3Al(111)$ substrate surface. This structure has been identified by means of HREELS and STM. The HREELS data will show that at 800 K the oxidation shows a very characteristic behavior that cannot be described by the formation of an $Al_2O_3$ overlayer. Moreover, the STM image shows a "Strawberry" structure due to the oxide islands formation at 1000 K. Conclusively, from the oxygen interaction with $Ni_3Al(111)$ alloy surface at 800 K and 1000 K an islands growth of the aluminum oxide overlayer has been found.

Experimental Studies on Plasmon Resonance of Ag Nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG)

  • Lopez Salido, Ignacio;Bertram, Nils;Lim, Dong-Chan;Gantefor, Gerd;Kim, Young-Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.556-562
    • /
    • 2006
  • Studies on Ag nanoparticles grown on Highly Ordered Pyrolytic Graphite (HOPG) using HREELS provide different results for smaller and larger particle sizes corresponding to Ag coverages below and above 4 monolayers, respectively. For the larger particles, a positive frequency shift with decreasing particle size and a broadening of the plasmon resonance were observed with decreasing particle size, in line with previous studies on Ag on alumina. For the smaller particles, in contrast, a shift to lower energy with decreasing particle size, and a narrowing of the plasmon resonance with decreasing particle size can be found. The asymmetry of the Ag-features present for Ag coverages above 4 monolayers disappears for Ag coverages below 4 monolayers. The result for the smaller particles can be rationalized in terms of change of the particle growth mode with increasing particle size, which corroborates our STM data, as well as electronic effects due to the metal/support charge transfer.

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF